n8n/packages/@n8n/nodes-langchain/nodes/llms/LMOpenHuggingFaceInference/LmOpenHuggingFaceInference.node.ts

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

151 lines
4.6 KiB
TypeScript
Raw Normal View History

/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeType,
type INodeTypeDescription,
type SupplyData,
} from 'n8n-workflow';
import { HuggingFaceInference } from 'langchain/llms/hf';
import { logWrapper } from '../../../utils/logWrapper';
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
export class LmOpenHuggingFaceInference implements INodeType {
description: INodeTypeDescription = {
displayName: 'Hugging Face Inference Model',
// eslint-disable-next-line n8n-nodes-base/node-class-description-name-miscased
name: 'lmOpenHuggingFaceInference',
icon: 'file:huggingface.svg',
group: ['transform'],
version: 1,
description: 'Language Model HuggingFaceInference',
defaults: {
name: 'Hugging Face Inference Model',
},
codex: {
categories: ['AI'],
subcategories: {
AI: ['Language Models'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmopenhuggingfaceinference/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [],
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs: [NodeConnectionType.AiLanguageModel],
outputNames: ['Model'],
credentials: [
{
name: 'huggingFaceApi',
required: true,
},
],
properties: [
getConnectionHintNoticeField([NodeConnectionType.AiChain, NodeConnectionType.AiAgent]),
{
displayName: 'Model',
name: 'model',
type: 'string',
default: 'gpt2',
},
{
displayName: 'Options',
name: 'options',
placeholder: 'Add Option',
description: 'Additional options to add',
type: 'collection',
default: {},
options: [
{
displayName: 'Custom Inference Endpoint',
name: 'endpointUrl',
default: '',
description: 'Custom endpoint URL',
type: 'string',
},
{
displayName: 'Frequency Penalty',
name: 'frequencyPenalty',
default: 0,
typeOptions: { maxValue: 2, minValue: -2, numberPrecision: 1 },
description:
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim",
type: 'number',
},
{
displayName: 'Maximum Number of Tokens',
name: 'maxTokens',
default: 128,
description:
'The maximum number of tokens to generate in the completion. Most models have a context length of 2048 tokens (except for the newest models, which support 32,768).',
type: 'number',
typeOptions: {
maxValue: 32768,
},
},
{
displayName: 'Presence Penalty',
name: 'presencePenalty',
default: 0,
typeOptions: { maxValue: 2, minValue: -2, numberPrecision: 1 },
description:
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics",
type: 'number',
},
{
displayName: 'Sampling Temperature',
name: 'temperature',
default: 1,
typeOptions: { maxValue: 1, minValue: 0, numberPrecision: 1 },
description:
'Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.',
type: 'number',
},
{
displayName: 'Top K',
name: 'topK',
default: 1,
typeOptions: { maxValue: 1, minValue: 0, numberPrecision: 1 },
description:
'Controls the top tokens to consider within the sample operation to create new text',
type: 'number',
},
{
displayName: 'Top P',
name: 'topP',
default: 1,
typeOptions: { maxValue: 1, minValue: 0, numberPrecision: 1 },
description:
'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.',
type: 'number',
},
],
},
],
};
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise<SupplyData> {
const credentials = await this.getCredentials('huggingFaceApi');
const modelName = this.getNodeParameter('model', itemIndex) as string;
const options = this.getNodeParameter('options', itemIndex, {}) as object;
const model = new HuggingFaceInference({
model: modelName,
apiKey: credentials.apiKey as string,
...options,
});
return {
response: logWrapper(model, this),
};
}
}