n8n/packages/@n8n/nodes-langchain/nodes/chains/SentimentAnalysis/SentimentAnalysis.node.ts

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

258 lines
7.4 KiB
TypeScript
Raw Normal View History

import type {
IDataObject,
IExecuteFunctions,
INodeExecutionData,
INodeParameters,
INodeType,
INodeTypeDescription,
} from 'n8n-workflow';
import { NodeConnectionType, NodeOperationError } from 'n8n-workflow';
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
import { HumanMessage } from '@langchain/core/messages';
import { SystemMessagePromptTemplate, ChatPromptTemplate } from '@langchain/core/prompts';
import { OutputFixingParser, StructuredOutputParser } from 'langchain/output_parsers';
import { z } from 'zod';
import { getTracingConfig } from '../../../utils/tracing';
const DEFAULT_SYSTEM_PROMPT_TEMPLATE =
'You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.';
const DEFAULT_CATEGORIES = 'Positive, Neutral, Negative';
const configuredOutputs = (parameters: INodeParameters, defaultCategories: string) => {
const options = (parameters?.options ?? {}) as IDataObject;
const categories = (options?.categories as string) ?? defaultCategories;
const categoriesArray = categories.split(',').map((cat) => cat.trim());
const ret = categoriesArray.map((cat) => ({ type: NodeConnectionType.Main, displayName: cat }));
return ret;
};
export class SentimentAnalysis implements INodeType {
description: INodeTypeDescription = {
displayName: 'Sentiment Analysis',
name: 'sentimentAnalysis',
icon: 'fa:balance-scale-left',
iconColor: 'black',
group: ['transform'],
version: 1,
description: 'Analyze the sentiment of your text',
codex: {
categories: ['AI'],
subcategories: {
AI: ['Chains', 'Root Nodes'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/',
},
],
},
},
defaults: {
name: 'Sentiment Analysis',
},
inputs: [
{ displayName: '', type: NodeConnectionType.Main },
{
displayName: 'Model',
maxConnections: 1,
type: NodeConnectionType.AiLanguageModel,
required: true,
},
],
outputs: `={{(${configuredOutputs})($parameter, "${DEFAULT_CATEGORIES}")}}`,
properties: [
{
displayName: 'Text to Analyze',
name: 'inputText',
type: 'string',
required: true,
default: '',
description: 'Use an expression to reference data in previous nodes or enter static text',
typeOptions: {
rows: 2,
},
},
{
displayName:
'Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.',
name: 'detailedResultsNotice',
type: 'notice',
default: '',
displayOptions: {
show: {
'/options.includeDetailedResults': [true],
},
},
},
{
displayName: 'Options',
name: 'options',
type: 'collection',
default: {},
placeholder: 'Add Option',
options: [
{
displayName: 'Sentiment Categories',
name: 'categories',
type: 'string',
default: DEFAULT_CATEGORIES,
description: 'A comma-separated list of categories to analyze',
noDataExpression: true,
typeOptions: {
rows: 2,
},
},
{
displayName: 'System Prompt Template',
name: 'systemPromptTemplate',
type: 'string',
default: DEFAULT_SYSTEM_PROMPT_TEMPLATE,
description: 'String to use directly as the system prompt template',
typeOptions: {
rows: 6,
},
},
{
displayName: 'Include Detailed Results',
name: 'includeDetailedResults',
type: 'boolean',
default: false,
description:
'Whether to include sentiment strength and confidence scores in the output',
},
{
displayName: 'Enable Auto-Fixing',
name: 'enableAutoFixing',
type: 'boolean',
default: true,
description: 'Whether to enable auto-fixing for the output parser',
},
],
},
],
};
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
const items = this.getInputData();
const llm = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const returnData: INodeExecutionData[][] = [];
for (let i = 0; i < items.length; i++) {
try {
const sentimentCategories = this.getNodeParameter(
'options.categories',
i,
DEFAULT_CATEGORIES,
) as string;
const categories = sentimentCategories
.split(',')
.map((cat) => cat.trim())
.filter(Boolean);
if (categories.length === 0) {
throw new NodeOperationError(this.getNode(), 'No sentiment categories provided', {
itemIndex: i,
});
}
// Initialize returnData with empty arrays for each category
if (returnData.length === 0) {
returnData.push(...Array.from({ length: categories.length }, () => []));
}
const options = this.getNodeParameter('options', i, {}) as {
systemPromptTemplate?: string;
includeDetailedResults?: boolean;
enableAutoFixing?: boolean;
};
const schema = z.object({
sentiment: z.enum(categories as [string, ...string[]]),
strength: z
.number()
.min(0)
.max(1)
.describe('Strength score for sentiment in relation to the category'),
confidence: z.number().min(0).max(1),
});
const structuredParser = StructuredOutputParser.fromZodSchema(schema);
const parser = options.enableAutoFixing
? OutputFixingParser.fromLLM(llm, structuredParser)
: structuredParser;
const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate(
`${options.systemPromptTemplate ?? DEFAULT_SYSTEM_PROMPT_TEMPLATE}
{format_instructions}`,
);
const input = this.getNodeParameter('inputText', i) as string;
const inputPrompt = new HumanMessage(input);
const messages = [
await systemPromptTemplate.format({
categories: sentimentCategories,
format_instructions: parser.getFormatInstructions(),
}),
inputPrompt,
];
const prompt = ChatPromptTemplate.fromMessages(messages);
const chain = prompt.pipe(llm).pipe(parser).withConfig(getTracingConfig(this));
try {
const output = await chain.invoke(messages);
const sentimentIndex = categories.findIndex(
(s) => s.toLowerCase() === output.sentiment.toLowerCase(),
);
if (sentimentIndex !== -1) {
const resultItem = { ...items[i] };
const sentimentAnalysis: IDataObject = {
category: output.sentiment,
};
if (options.includeDetailedResults) {
sentimentAnalysis.strength = output.strength;
sentimentAnalysis.confidence = output.confidence;
}
resultItem.json = {
...resultItem.json,
sentimentAnalysis,
};
returnData[sentimentIndex].push(resultItem);
}
} catch (error) {
throw new NodeOperationError(
this.getNode(),
'Error during parsing of LLM output, please check your LLM model and configuration',
{
itemIndex: i,
},
);
}
} catch (error) {
if (this.continueOnFail()) {
const executionErrorData = this.helpers.constructExecutionMetaData(
this.helpers.returnJsonArray({ error: error.message }),
{ itemData: { item: i } },
);
returnData[0].push(...executionErrorData);
continue;
}
throw error;
}
}
return returnData;
}
}