n8n/packages/core/src/PartialExecutionUtils/DirectedGraph.ts

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

500 lines
13 KiB
TypeScript
Raw Normal View History

import * as a from 'assert';
import type { IConnections, INode, WorkflowParameters } from 'n8n-workflow';
import { NodeConnectionType, Workflow } from 'n8n-workflow';
export type GraphConnection = {
from: INode;
to: INode;
type: NodeConnectionType;
outputIndex: number;
inputIndex: number;
};
// fromName-outputType-outputIndex-inputIndex-toName
type DirectedGraphKey = `${string}-${NodeConnectionType}-${number}-${number}-${string}`;
type RemoveNodeBaseOptions = {
reconnectConnections: boolean;
skipConnectionFn?: (connection: GraphConnection) => boolean;
};
/**
* Represents a directed graph as an adjacency list, e.g. one list for the
* vertices and one list for the edges.
* To integrate easier with the n8n codebase vertices are called nodes and
* edges are called connections.
*
* The reason why this exists next to the Workflow class is that the workflow
* class stored the graph in a deeply nested, normalized format. This format
* does not lend itself to editing the graph or build graphs incrementally.
* This closes this gap by having import and export functions:
* `fromWorkflow`, `toWorkflow`.
*
* Thus it allows to do something like this:
* ```ts
* const newWorkflow = DirectedGraph.fromWorkflow(workflow)
* .addNodes(node1, node2)
* .addConnection({ from: node1, to: node2 })
* .toWorkflow(...workflow);
* ```
*/
export class DirectedGraph {
private nodes: Map<string, INode> = new Map();
private connections: Map<DirectedGraphKey, GraphConnection> = new Map();
getNodes() {
return new Map(this.nodes.entries());
}
getConnections(filter: { to?: INode } = {}) {
const filteredCopy: GraphConnection[] = [];
for (const connection of this.connections.values()) {
const toMatches = filter.to ? connection.to === filter.to : true;
if (toMatches) {
filteredCopy.push(connection);
}
}
return filteredCopy;
}
addNode(node: INode) {
this.nodes.set(node.name, node);
return this;
}
addNodes(...nodes: INode[]) {
for (const node of nodes) {
this.addNode(node);
}
return this;
}
/**
* Removes a node from the graph.
*
* By default it will also remove all connections that use that node and
* return nothing.
*
* If you pass `{ reconnectConnections: true }` it will rewire all
* connections making sure all parent nodes are connected to all child nodes
* and return the new connections.
*/
removeNode(
node: INode,
options?: { reconnectConnections: true } & RemoveNodeBaseOptions,
): GraphConnection[];
removeNode(
node: INode,
options?: { reconnectConnections: false } & RemoveNodeBaseOptions,
): undefined;
removeNode(
node: INode,
options: RemoveNodeBaseOptions = { reconnectConnections: false },
): undefined | GraphConnection[] {
if (options.reconnectConnections) {
const incomingConnections = this.getDirectParentConnections(node);
const outgoingConnections = this.getDirectChildConnections(node);
const newConnections: GraphConnection[] = [];
for (const incomingConnection of incomingConnections) {
if (options.skipConnectionFn && options.skipConnectionFn(incomingConnection)) {
continue;
}
for (const outgoingConnection of outgoingConnections) {
if (options.skipConnectionFn && options.skipConnectionFn(outgoingConnection)) {
continue;
}
const newConnection = {
...incomingConnection,
to: outgoingConnection.to,
inputIndex: outgoingConnection.inputIndex,
};
newConnections.push(newConnection);
}
}
for (const [key, connection] of this.connections.entries()) {
if (connection.to === node || connection.from === node) {
this.connections.delete(key);
}
}
for (const newConnection of newConnections) {
this.connections.set(this.makeKey(newConnection), newConnection);
}
this.nodes.delete(node.name);
return newConnections;
} else {
for (const [key, connection] of this.connections.entries()) {
if (connection.to === node || connection.from === node) {
this.connections.delete(key);
}
}
this.nodes.delete(node.name);
return;
}
}
addConnection(connectionInput: {
from: INode;
to: INode;
type?: NodeConnectionType;
outputIndex?: number;
inputIndex?: number;
}) {
const { from, to } = connectionInput;
const fromExists = this.nodes.get(from.name) === from;
const toExists = this.nodes.get(to.name) === to;
a.ok(fromExists);
a.ok(toExists);
const connection: GraphConnection = {
...connectionInput,
type: connectionInput.type ?? NodeConnectionType.Main,
outputIndex: connectionInput.outputIndex ?? 0,
inputIndex: connectionInput.inputIndex ?? 0,
};
this.connections.set(this.makeKey(connection), connection);
return this;
}
addConnections(
...connectionInputs: Array<{
from: INode;
to: INode;
type?: NodeConnectionType;
outputIndex?: number;
inputIndex?: number;
}>
) {
for (const connectionInput of connectionInputs) {
this.addConnection(connectionInput);
}
return this;
}
getDirectChildConnections(node: INode) {
const nodeExists = this.nodes.get(node.name) === node;
a.ok(nodeExists);
const directChildren: GraphConnection[] = [];
for (const connection of this.connections.values()) {
if (connection.from !== node) {
continue;
}
directChildren.push(connection);
}
return directChildren;
}
private getChildrenRecursive(node: INode, children: Set<INode>) {
const directChildren = this.getDirectChildConnections(node);
for (const directChild of directChildren) {
// Break out if we found a cycle.
if (children.has(directChild.to)) {
continue;
}
children.add(directChild.to);
this.getChildrenRecursive(directChild.to, children);
}
return children;
}
/**
* Returns all nodes that are children of the node that is passed as an
* argument.
*
* If the node being passed in is a child of itself (e.g. is part of a
* cycle), the return set will contain it as well.
*/
getChildren(node: INode) {
return this.getChildrenRecursive(node, new Set());
}
getDirectParentConnections(node: INode) {
const nodeExists = this.nodes.get(node.name) === node;
a.ok(nodeExists);
const directParents: GraphConnection[] = [];
for (const connection of this.connections.values()) {
if (connection.to !== node) {
continue;
}
directParents.push(connection);
}
return directParents;
}
private getParentConnectionsRecursive(node: INode, connections: Set<GraphConnection>) {
const parentConnections = this.getDirectParentConnections(node);
for (const connection of parentConnections) {
// break out of cycles
if (connections.has(connection)) {
continue;
}
connections.add(connection);
this.getParentConnectionsRecursive(connection.from, connections);
}
return connections;
}
getParentConnections(node: INode) {
return this.getParentConnectionsRecursive(node, new Set());
}
getConnection(
from: INode,
outputIndex: number,
type: NodeConnectionType,
inputIndex: number,
to: INode,
): GraphConnection | undefined {
return this.connections.get(
this.makeKey({
from,
outputIndex,
type,
inputIndex,
to,
}),
);
}
/**
* Returns all strongly connected components.
*
* Strongly connected components are a set of nodes where it's possible to
* reach every node from every node.
*
* Strongly connected components are mutually exclusive in directed graphs,
* e.g. they cannot overlap.
*
* The smallest strongly connected component is a single node, since it can
* reach itself from itself by not following any edges.
*
* The algorithm implement here is Tarjan's algorithm.
*
* Example:
*
* node1node2node3node5
*
*
*
* node4 node6
*
*
* The strongly connected components are
* 1. node1
* 2. node2, node4, node3
* 3. node5, node6
*
* Further reading:
* https://en.wikipedia.org/wiki/Strongly_connected_component
* https://www.youtube.com/watch?v=wUgWX0nc4NY
*/
getStronglyConnectedComponents(): Array<Set<INode>> {
let id = 0;
const visited = new Set<INode>();
const ids = new Map<INode, number>();
const lowLinkValues = new Map<INode, number>();
const stack: INode[] = [];
const stronglyConnectedComponents: Array<Set<INode>> = [];
const followNode = (node: INode) => {
if (visited.has(node)) {
return;
}
visited.add(node);
lowLinkValues.set(node, id);
ids.set(node, id);
id++;
stack.push(node);
const directChildren = this.getDirectChildConnections(node).map((c) => c.to);
for (const child of directChildren) {
followNode(child);
// if node is on stack min the low id
if (stack.includes(child)) {
const childLowLinkValue = lowLinkValues.get(child);
const ownLowLinkValue = lowLinkValues.get(node);
a.ok(childLowLinkValue !== undefined);
a.ok(ownLowLinkValue !== undefined);
const lowestLowLinkValue = Math.min(childLowLinkValue, ownLowLinkValue);
lowLinkValues.set(node, lowestLowLinkValue);
}
}
// after we visited all children, check if the low id is the same as the
// nodes id, which means we found a strongly connected component
const ownId = ids.get(node);
const ownLowLinkValue = lowLinkValues.get(node);
a.ok(ownId !== undefined);
a.ok(ownLowLinkValue !== undefined);
if (ownId === ownLowLinkValue) {
// pop from the stack until the stack is empty or we find a node that
// has a different low id
const scc: Set<INode> = new Set();
let next = stack.at(-1);
while (next && lowLinkValues.get(next) === ownId) {
stack.pop();
scc.add(next);
next = stack.at(-1);
}
if (scc.size > 0) {
stronglyConnectedComponents.push(scc);
}
}
};
for (const node of this.nodes.values()) {
followNode(node);
}
return stronglyConnectedComponents;
}
private depthFirstSearchRecursive(
from: INode,
fn: (node: INode) => boolean,
seen: Set<INode>,
): INode | undefined {
if (seen.has(from)) {
return undefined;
}
seen.add(from);
if (fn(from)) {
return from;
}
for (const childConnection of this.getDirectChildConnections(from)) {
const found = this.depthFirstSearchRecursive(childConnection.to, fn, seen);
if (found) {
return found;
}
}
return undefined;
}
/**
* Like `Array.prototype.find` but for directed graphs.
*
* Starting from, and including, the `from` node this calls the provided
* predicate function with every child node until the predicate function
* returns true.
*
* The search is depth first, meaning every branch is exhausted before the
* next branch is tried.
*
* The first node for which the predicate function returns true is returned.
*
* If the graph is exhausted and the predicate function never returned true,
* undefined is returned instead.
*/
depthFirstSearch({ from, fn }: { from: INode; fn: (node: INode) => boolean }): INode | undefined {
return this.depthFirstSearchRecursive(from, fn, new Set());
}
toWorkflow(parameters: Omit<WorkflowParameters, 'nodes' | 'connections'>): Workflow {
return new Workflow({
...parameters,
nodes: [...this.nodes.values()],
connections: this.toIConnections(),
});
}
static fromWorkflow(workflow: Workflow): DirectedGraph {
const graph = new DirectedGraph();
graph.addNodes(...Object.values(workflow.nodes));
for (const [fromNodeName, iConnection] of Object.entries(workflow.connectionsBySourceNode)) {
const from = workflow.getNode(fromNodeName);
a.ok(from);
for (const [outputType, outputs] of Object.entries(iConnection)) {
for (const [outputIndex, conns] of outputs.entries()) {
for (const conn of conns) {
// TODO: What's with the input type?
const { node: toNodeName, type: _inputType, index: inputIndex } = conn;
const to = workflow.getNode(toNodeName);
a.ok(to);
graph.addConnection({
from,
to,
// TODO: parse outputType instead of casting it
type: outputType as NodeConnectionType,
outputIndex,
inputIndex,
});
}
}
}
}
return graph;
}
private toIConnections() {
const result: IConnections = {};
for (const connection of this.connections.values()) {
const { from, to, type, outputIndex, inputIndex } = connection;
result[from.name] = result[from.name] ?? {
[type]: [],
};
const resultConnection = result[from.name];
resultConnection[type][outputIndex] = resultConnection[type][outputIndex] ?? [];
const group = resultConnection[type][outputIndex];
group.push({
node: to.name,
type,
index: inputIndex,
});
}
return result;
}
private makeKey(connection: GraphConnection): DirectedGraphKey {
return `${connection.from.name}-${connection.type}-${connection.outputIndex}-${connection.inputIndex}-${connection.to.name}`;
}
}