2023-11-29 03:13:55 -08:00
/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import {
NodeConnectionType ,
type INodeType ,
type INodeTypeDescription ,
2024-10-28 03:37:23 -07:00
type ISupplyDataFunctions ,
2023-11-29 03:13:55 -08:00
type SupplyData ,
} from 'n8n-workflow' ;
2024-03-07 02:36:36 -08:00
import { HuggingFaceInferenceEmbeddings } from '@langchain/community/embeddings/hf' ;
2023-11-29 03:13:55 -08:00
import { logWrapper } from '../../../utils/logWrapper' ;
import { getConnectionHintNoticeField } from '../../../utils/sharedFields' ;
export class EmbeddingsHuggingFaceInference implements INodeType {
description : INodeTypeDescription = {
displayName : 'Embeddings Hugging Face Inference' ,
name : 'embeddingsHuggingFaceInference' ,
icon : 'file:huggingface.svg' ,
group : [ 'transform' ] ,
version : 1 ,
description : 'Use HuggingFace Inference Embeddings' ,
defaults : {
name : 'Embeddings HuggingFace Inference' ,
} ,
credentials : [
{
name : 'huggingFaceApi' ,
required : true ,
} ,
] ,
codex : {
categories : [ 'AI' ] ,
subcategories : {
AI : [ 'Embeddings' ] ,
} ,
resources : {
primaryDocumentation : [
{
url : 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingshuggingfaceinference/' ,
} ,
] ,
} ,
} ,
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs : [ ] ,
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs : [ NodeConnectionType . AiEmbedding ] ,
outputNames : [ 'Embeddings' ] ,
properties : [
getConnectionHintNoticeField ( [ NodeConnectionType . AiVectorStore ] ) ,
{
displayName :
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.' ,
name : 'notice' ,
type : 'notice' ,
default : '' ,
} ,
{
displayName : 'Model Name' ,
name : 'modelName' ,
type : 'string' ,
default : 'sentence-transformers/distilbert-base-nli-mean-tokens' ,
description : 'The model name to use from HuggingFace library' ,
} ,
{
displayName : 'Options' ,
name : 'options' ,
placeholder : 'Add Option' ,
description : 'Additional options to add' ,
type : 'collection' ,
default : { } ,
options : [
{
displayName : 'Custom Inference Endpoint' ,
name : 'endpointUrl' ,
default : '' ,
description : 'Custom endpoint URL' ,
type : 'string' ,
} ,
] ,
} ,
] ,
} ;
2024-10-28 03:37:23 -07:00
async supplyData ( this : ISupplyDataFunctions , itemIndex : number ) : Promise < SupplyData > {
2024-08-28 00:32:53 -07:00
this . logger . debug ( 'Supply data for embeddings HF Inference' ) ;
2023-11-29 03:13:55 -08:00
const model = this . getNodeParameter (
'modelName' ,
itemIndex ,
'sentence-transformers/distilbert-base-nli-mean-tokens' ,
) as string ;
const credentials = await this . getCredentials ( 'huggingFaceApi' ) ;
const options = this . getNodeParameter ( 'options' , itemIndex , { } ) as object ;
const embeddings = new HuggingFaceInferenceEmbeddings ( {
apiKey : credentials.apiKey as string ,
model ,
. . . options ,
} ) ;
return {
response : logWrapper ( embeddings , this ) ,
} ;
}
}