mirror of
https://github.com/n8n-io/n8n.git
synced 2025-01-18 08:00:48 -08:00
105 lines
3 KiB
TypeScript
105 lines
3 KiB
TypeScript
|
/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
|
||
|
import {
|
||
|
NodeConnectionType,
|
||
|
type IExecuteFunctions,
|
||
|
type INodeType,
|
||
|
type INodeTypeDescription,
|
||
|
type SupplyData,
|
||
|
} from 'n8n-workflow';
|
||
|
import { HuggingFaceInferenceEmbeddings } from 'langchain/embeddings/hf';
|
||
|
import { logWrapper } from '../../../utils/logWrapper';
|
||
|
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
|
||
|
|
||
|
export class EmbeddingsHuggingFaceInference implements INodeType {
|
||
|
description: INodeTypeDescription = {
|
||
|
displayName: 'Embeddings Hugging Face Inference',
|
||
|
name: 'embeddingsHuggingFaceInference',
|
||
|
icon: 'file:huggingface.svg',
|
||
|
group: ['transform'],
|
||
|
version: 1,
|
||
|
description: 'Use HuggingFace Inference Embeddings',
|
||
|
defaults: {
|
||
|
name: 'Embeddings HuggingFace Inference',
|
||
|
},
|
||
|
credentials: [
|
||
|
{
|
||
|
name: 'huggingFaceApi',
|
||
|
required: true,
|
||
|
},
|
||
|
],
|
||
|
codex: {
|
||
|
categories: ['AI'],
|
||
|
subcategories: {
|
||
|
AI: ['Embeddings'],
|
||
|
},
|
||
|
resources: {
|
||
|
primaryDocumentation: [
|
||
|
{
|
||
|
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingshuggingfaceinference/',
|
||
|
},
|
||
|
],
|
||
|
},
|
||
|
},
|
||
|
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
|
||
|
inputs: [],
|
||
|
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
|
||
|
outputs: [NodeConnectionType.AiEmbedding],
|
||
|
outputNames: ['Embeddings'],
|
||
|
properties: [
|
||
|
getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]),
|
||
|
{
|
||
|
displayName:
|
||
|
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.',
|
||
|
name: 'notice',
|
||
|
type: 'notice',
|
||
|
default: '',
|
||
|
},
|
||
|
{
|
||
|
displayName: 'Model Name',
|
||
|
name: 'modelName',
|
||
|
type: 'string',
|
||
|
default: 'sentence-transformers/distilbert-base-nli-mean-tokens',
|
||
|
description: 'The model name to use from HuggingFace library',
|
||
|
},
|
||
|
{
|
||
|
displayName: 'Options',
|
||
|
name: 'options',
|
||
|
placeholder: 'Add Option',
|
||
|
description: 'Additional options to add',
|
||
|
type: 'collection',
|
||
|
default: {},
|
||
|
options: [
|
||
|
{
|
||
|
displayName: 'Custom Inference Endpoint',
|
||
|
name: 'endpointUrl',
|
||
|
default: '',
|
||
|
description: 'Custom endpoint URL',
|
||
|
type: 'string',
|
||
|
},
|
||
|
],
|
||
|
},
|
||
|
],
|
||
|
};
|
||
|
|
||
|
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise<SupplyData> {
|
||
|
this.logger.verbose('Supply data for embeddings HF Inference');
|
||
|
const model = this.getNodeParameter(
|
||
|
'modelName',
|
||
|
itemIndex,
|
||
|
'sentence-transformers/distilbert-base-nli-mean-tokens',
|
||
|
) as string;
|
||
|
const credentials = await this.getCredentials('huggingFaceApi');
|
||
|
const options = this.getNodeParameter('options', itemIndex, {}) as object;
|
||
|
|
||
|
const embeddings = new HuggingFaceInferenceEmbeddings({
|
||
|
apiKey: credentials.apiKey as string,
|
||
|
model,
|
||
|
...options,
|
||
|
});
|
||
|
|
||
|
return {
|
||
|
response: logWrapper(embeddings, this),
|
||
|
};
|
||
|
}
|
||
|
}
|