diff --git a/packages/@n8n/nodes-langchain/nodes/agents/Agent/agents/ToolsAgent/execute.ts b/packages/@n8n/nodes-langchain/nodes/agents/Agent/agents/ToolsAgent/execute.ts index b0e36d0d8b..f81ab9526c 100644 --- a/packages/@n8n/nodes-langchain/nodes/agents/Agent/agents/ToolsAgent/execute.ts +++ b/packages/@n8n/nodes-langchain/nodes/agents/Agent/agents/ToolsAgent/execute.ts @@ -1,4 +1,5 @@ import type { BaseChatMemory } from '@langchain/community/memory/chat_memory'; +import type { BaseChatModel } from '@langchain/core/language_models/chat_models'; import { HumanMessage } from '@langchain/core/messages'; import type { BaseMessage } from '@langchain/core/messages'; import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts'; @@ -8,6 +9,7 @@ import type { Tool } from '@langchain/core/tools'; import { DynamicStructuredTool } from '@langchain/core/tools'; import type { AgentAction, AgentFinish } from 'langchain/agents'; import { AgentExecutor, createToolCallingAgent } from 'langchain/agents'; +import type { ToolsAgentAction } from 'langchain/dist/agents/tool_calling/output_parser'; import { omit } from 'lodash'; import { BINARY_ENCODING, jsonParse, NodeConnectionType, NodeOperationError } from 'n8n-workflow'; import type { IExecuteFunctions, INodeExecutionData } from 'n8n-workflow'; @@ -22,28 +24,53 @@ import { import { SYSTEM_MESSAGE } from './prompt'; -function getOutputParserSchema(outputParser: N8nOutputParser): ZodObject { +/* ----------------------------------------------------------- + Output Parser Helper +----------------------------------------------------------- */ +/** + * Retrieve the output parser schema. + * If the parser does not return a valid schema, default to a schema with a single text field. + */ +export function getOutputParserSchema( + outputParser: N8nOutputParser, + // eslint-disable-next-line @typescript-eslint/no-explicit-any +): ZodObject { const schema = + // eslint-disable-next-line @typescript-eslint/no-explicit-any (outputParser.getSchema() as ZodObject) ?? z.object({ text: z.string() }); - return schema; } -async function extractBinaryMessages(ctx: IExecuteFunctions) { - const binaryData = ctx.getInputData()?.[0]?.binary ?? {}; +/* ----------------------------------------------------------- + Binary Data Helpers +----------------------------------------------------------- */ +/** + * Extracts binary image messages from the input data. + * When operating in filesystem mode, the binary stream is first converted to a buffer. + * + * @param ctx - The execution context + * @param itemIndex - The current item index + * @returns A HumanMessage containing the binary image messages. + */ +export async function extractBinaryMessages( + ctx: IExecuteFunctions, + itemIndex: number, +): Promise { + const binaryData = ctx.getInputData()?.[itemIndex]?.binary ?? {}; const binaryMessages = await Promise.all( Object.values(binaryData) .filter((data) => data.mimeType.startsWith('image/')) .map(async (data) => { - let binaryUrlString; + let binaryUrlString: string; // In filesystem mode we need to get binary stream by id before converting it to buffer if (data.id) { const binaryBuffer = await ctx.helpers.binaryToBuffer( await ctx.helpers.getBinaryStream(data.id), ); - - binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString(BINARY_ENCODING)}`; + binaryUrlString = `data:${data.mimeType};base64,${Buffer.from(binaryBuffer).toString( + BINARY_ENCODING, + )}`; } else { binaryUrlString = data.data.includes('base64') ? data.data @@ -62,6 +89,10 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) { content: [...binaryMessages], }); } + +/* ----------------------------------------------------------- + Agent Output Format Helpers +----------------------------------------------------------- */ /** * Fixes empty content messages in agent steps. * @@ -73,7 +104,9 @@ async function extractBinaryMessages(ctx: IExecuteFunctions) { * @param steps - The agent steps to fix * @returns The fixed agent steps */ -function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) { +export function fixEmptyContentMessage( + steps: AgentFinish | ToolsAgentAction[], +): AgentFinish | ToolsAgentAction[] { if (!Array.isArray(steps)) return steps; steps.forEach((step) => { @@ -96,111 +129,111 @@ function fixEmptyContentMessage(steps: AgentFinish | AgentAction[]) { return steps; } -export async function toolsAgentExecute(this: IExecuteFunctions): Promise { - this.logger.debug('Executing Tools Agent'); - const model = await this.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0); +/** + * Ensures consistent handling of outputs regardless of the model used, + * providing a unified output format for further processing. + * + * This method is necessary to handle different output formats from various language models. + * Specifically, it checks if the agent step is the final step (contains returnValues) and determines + * if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models). + * + * Examples: + * 1. Anthropic model output: + * ```json + * { + * "output": [ + * { + * "index": 0, + * "type": "text", + * "text": "The result of the calculation is approximately 1001.8166..." + * } + * ] + * } + *``` + * 2. OpenAI model output: + * ```json + * { + * "output": "The result of the calculation is approximately 1001.82..." + * } + * ``` + * + * @param steps - The agent finish or agent action steps. + * @returns The modified agent finish steps or the original steps. + */ +export function handleAgentFinishOutput( + steps: AgentFinish | AgentAction[], +): AgentFinish | AgentAction[] { + type AgentMultiOutputFinish = AgentFinish & { + returnValues: { output: Array<{ text: string; type: string; index: number }> }; + }; + const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish; - if (!isChatInstance(model) || !model.bindTools) { - throw new NodeOperationError( - this.getNode(), - 'Tools Agent requires Chat Model which supports Tools calling', - ); - } - - const memory = (await this.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as - | BaseChatMemory - | undefined; - - const tools = (await getConnectedTools(this, true, false)) as Array; - const outputParser = (await getOptionalOutputParsers(this))?.[0]; - let structuredOutputParserTool: DynamicStructuredTool | undefined; - /** - * Ensures consistent handling of outputs regardless of the model used, - * providing a unified output format for further processing. - * - * This method is necessary to handle different output formats from various language models. - * Specifically, it checks if the agent step is the final step (contains returnValues) and determines - * if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models). - * - * Examples: - * 1. Anthropic model output: - * ```json - * { - * "output": [ - * { - * "index": 0, - * "type": "text", - * "text": "The result of the calculation is approximately 1001.8166..." - * } - * ] - * } - *``` - * 2. OpenAI model output: - * ```json - * { - * "output": "The result of the calculation is approximately 1001.82..." - * } - * ``` - * - * @param steps - The agent finish or agent action steps. - * @returns The modified agent finish steps or the original steps. - */ - function handleAgentFinishOutput(steps: AgentFinish | AgentAction[]) { - // Check if the steps contain multiple outputs - type AgentMultiOutputFinish = AgentFinish & { - returnValues: { output: Array<{ text: string; type: string; index: number }> }; - }; - const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish; - - if (agentFinishSteps.returnValues) { - const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output); - - if (isMultiOutput) { - // Define the type for each item in the multi-output array - type MultiOutputItem = { index: number; type: string; text: string }; - const multiOutputSteps = agentFinishSteps.returnValues.output as MultiOutputItem[]; - - // Check if all items in the multi-output array are of type 'text' - const isTextOnly = (multiOutputSteps ?? []).every((output) => 'text' in output); - - if (isTextOnly) { - // If all items are of type 'text', merge them into a single string - agentFinishSteps.returnValues.output = multiOutputSteps - .map((output) => output.text) - .join('\n') - .trim(); - } - return agentFinishSteps; + if (agentFinishSteps.returnValues) { + const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output); + if (isMultiOutput) { + // If all items in the multi-output array are of type 'text', merge them into a single string + const multiOutputSteps = agentFinishSteps.returnValues.output as Array<{ + index: number; + type: string; + text: string; + }>; + const isTextOnly = multiOutputSteps.every((output) => 'text' in output); + if (isTextOnly) { + agentFinishSteps.returnValues.output = multiOutputSteps + .map((output) => output.text) + .join('\n') + .trim(); } + return agentFinishSteps; } - - // If the steps do not contain multiple outputs, return them as is - return agentFinishSteps; } - // If memory is connected we need to stringify the returnValues so that it can be saved in the memory as a string - function handleParsedStepOutput(output: Record) { - return { - returnValues: memory ? { output: JSON.stringify(output) } : output, - log: 'Final response formatted', - }; - } - async function agentStepsParser( - steps: AgentFinish | AgentAction[], - ): Promise { + return agentFinishSteps; +} + +/** + * Wraps the parsed output so that it can be stored in memory. + * If memory is connected, the output is stringified. + * + * @param output - The parsed output object + * @param memory - The connected memory (if any) + * @returns The formatted output object + */ +export function handleParsedStepOutput( + output: Record, + memory?: BaseChatMemory, +): { returnValues: Record; log: string } { + return { + returnValues: memory ? { output: JSON.stringify(output) } : output, + log: 'Final response formatted', + }; +} + +/** + * Parses agent steps using the provided output parser. + * If the agent used the 'format_final_response' tool, the output is parsed accordingly. + * + * @param steps - The agent finish or action steps + * @param outputParser - The output parser (if defined) + * @param memory - The connected memory (if any) + * @returns The parsed steps with the final output + */ +export const getAgentStepsParser = + (outputParser?: N8nOutputParser, memory?: BaseChatMemory) => + async (steps: AgentFinish | AgentAction[]): Promise => { + // Check if the steps contain the 'format_final_response' tool invocation. if (Array.isArray(steps)) { const responseParserTool = steps.find((step) => step.tool === 'format_final_response'); - if (responseParserTool) { - const toolInput = responseParserTool?.toolInput; - // Check if the tool input is a string or an object and convert it to a string + if (responseParserTool && outputParser) { + const toolInput = responseParserTool.toolInput; + // Ensure the tool input is a string const parserInput = toolInput instanceof Object ? JSON.stringify(toolInput) : toolInput; const returnValues = (await outputParser.parse(parserInput)) as Record; - - return handleParsedStepOutput(returnValues); + return handleParsedStepOutput(returnValues, memory); } } - // If the steps are an AgentFinish and the outputParser is defined it must mean that the LLM didn't use `format_final_response` tool so we will try to parse the output manually + // Otherwise, if the steps contain a returnValues field, try to parse them manually. if (outputParser && typeof steps === 'object' && (steps as AgentFinish).returnValues) { const finalResponse = (steps as AgentFinish).returnValues; let parserInput: string; @@ -213,7 +246,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise; - return handleParsedStepOutput(returnValues); + return handleParsedStepOutput(returnValues, memory); } - return handleAgentFinishOutput(steps); - } + return handleAgentFinishOutput(steps); + }; + +/* ----------------------------------------------------------- + Agent Setup Helpers +----------------------------------------------------------- */ +/** + * Retrieves the language model from the input connection. + * Throws an error if the model is not a valid chat instance or does not support tools. + * + * @param ctx - The execution context + * @returns The validated chat model + */ +export async function getChatModel(ctx: IExecuteFunctions): Promise { + const model = await ctx.getInputConnectionData(NodeConnectionType.AiLanguageModel, 0); + if (!isChatInstance(model) || !model.bindTools) { + throw new NodeOperationError( + ctx.getNode(), + 'Tools Agent requires Chat Model which supports Tools calling', + ); + } + return model; +} + +/** + * Retrieves the memory instance from the input connection if it is connected + * + * @param ctx - The execution context + * @returns The connected memory (if any) + */ +export async function getOptionalMemory( + ctx: IExecuteFunctions, +): Promise { + return (await ctx.getInputConnectionData(NodeConnectionType.AiMemory, 0)) as + | BaseChatMemory + | undefined; +} + +/** + * Retrieves the connected tools and (if an output parser is defined) + * appends a structured output parser tool. + * + * @param ctx - The execution context + * @param outputParser - The optional output parser + * @returns The array of connected tools + */ +export async function getTools( + ctx: IExecuteFunctions, + outputParser?: N8nOutputParser, +): Promise> { + const tools = (await getConnectedTools(ctx, true, false)) as Array; + + // If an output parser is available, create a dynamic tool to validate the final output. if (outputParser) { const schema = getOutputParserSchema(outputParser); - structuredOutputParserTool = new DynamicStructuredTool({ + const structuredOutputParserTool = new DynamicStructuredTool({ schema, name: 'format_final_response', description: 'Always use this tool for the final output to the user. It validates the output so only use it when you are sure the output is final.', - // We will not use the function here as we will use the parser to intercept & parse the output in the agentStepsParser + // We do not use a function here because we intercept the output with the parser. func: async () => '', }); - tools.push(structuredOutputParserTool); } + return tools; +} - const options = this.getNodeParameter('options', 0, {}) as { +/** + * Prepares the prompt messages for the agent. + * + * @param ctx - The execution context + * @param itemIndex - The current item index + * @param options - Options containing systemMessage and other parameters + * @returns The array of prompt messages + */ +export async function prepareMessages( + ctx: IExecuteFunctions, + itemIndex: number, + options: { systemMessage?: string; - maxIterations?: number; - returnIntermediateSteps?: boolean; - }; - - const passthroughBinaryImages = this.getNodeParameter('options.passthroughBinaryImages', 0, true); + passthroughBinaryImages?: boolean; + outputParser?: N8nOutputParser; + }, +): Promise { const messages: BaseMessagePromptTemplateLike[] = [ - ['system', `{system_message}${outputParser ? '\n\n{formatting_instructions}' : ''}`], + ['system', `{system_message}${options.outputParser ? '\n\n{formatting_instructions}' : ''}`], ['placeholder', '{chat_history}'], ['human', '{input}'], ]; - const hasBinaryData = this.getInputData()?.[0]?.binary !== undefined; - if (hasBinaryData && passthroughBinaryImages) { - const binaryMessage = await extractBinaryMessages(this); + // If there is binary data and the node option permits it, add a binary message + const hasBinaryData = ctx.getInputData()?.[itemIndex]?.binary !== undefined; + if (hasBinaryData && options.passthroughBinaryImages) { + const binaryMessage = await extractBinaryMessages(ctx, itemIndex); messages.push(binaryMessage); } + // We add the agent scratchpad last, so that the agent will not run in loops // by adding binary messages between each interaction messages.push(['placeholder', '{agent_scratchpad}']); - const prompt = ChatPromptTemplate.fromMessages(messages); + return messages; +} - const agent = createToolCallingAgent({ - llm: model, - tools, - prompt, - streamRunnable: false, - }); - agent.streamRunnable = false; +/** + * Creates the chat prompt from messages. + * + * @param messages - The messages array + * @returns The ChatPromptTemplate instance + */ +export function preparePrompt(messages: BaseMessagePromptTemplateLike[]): ChatPromptTemplate { + return ChatPromptTemplate.fromMessages(messages); +} - const runnableAgent = RunnableSequence.from([agent, agentStepsParser, fixEmptyContentMessage]); +/* ----------------------------------------------------------- + Main Executor Function +----------------------------------------------------------- */ +/** + * The main executor method for the Tools Agent. + * + * This function retrieves necessary components (model, memory, tools), prepares the prompt, + * creates the agent, and processes each input item. The error handling for each item is also + * managed here based on the node's continueOnFail setting. + * + * @returns The array of execution data for all processed items + */ +export async function toolsAgentExecute(this: IExecuteFunctions): Promise { + this.logger.debug('Executing Tools Agent'); - const executor = AgentExecutor.fromAgentAndTools({ - agent: runnableAgent, - memory, - tools, - returnIntermediateSteps: options.returnIntermediateSteps === true, - maxIterations: options.maxIterations ?? 10, - }); const returnData: INodeExecutionData[] = []; - const items = this.getInputData(); for (let itemIndex = 0; itemIndex < items.length; itemIndex++) { try { + const model = await getChatModel(this); + const memory = await getOptionalMemory(this); + const outputParsers = await getOptionalOutputParsers(this); + const outputParser = outputParsers?.[0]; + const tools = await getTools(this, outputParser); + const input = getPromptInputByType({ ctx: this, i: itemIndex, inputKey: 'text', promptTypeKey: 'promptType', }); - if (input === undefined) { - throw new NodeOperationError(this.getNode(), 'The ‘text‘ parameter is empty.'); + throw new NodeOperationError(this.getNode(), 'The “text” parameter is empty.'); } - const response = await executor.invoke({ - input, - system_message: options.systemMessage ?? SYSTEM_MESSAGE, - formatting_instructions: - 'IMPORTANT: Always call `format_final_response` to format your final response!', + const options = this.getNodeParameter('options', itemIndex, {}) as { + systemMessage?: string; + maxIterations?: number; + returnIntermediateSteps?: boolean; + passthroughBinaryImages?: boolean; + }; + + // Prepare the prompt messages and prompt template. + const messages = await prepareMessages(this, itemIndex, { + systemMessage: options.systemMessage, + passthroughBinaryImages: options.passthroughBinaryImages ?? true, + outputParser, + }); + const prompt = preparePrompt(messages); + + // Create the base agent that calls tools. + const agent = createToolCallingAgent({ + llm: model, + tools, + prompt, + streamRunnable: false, + }); + agent.streamRunnable = false; + // Wrap the agent with parsers and fixes. + const runnableAgent = RunnableSequence.from([ + agent, + getAgentStepsParser(outputParser, memory), + fixEmptyContentMessage, + ]); + const executor = AgentExecutor.fromAgentAndTools({ + agent: runnableAgent, + memory, + tools, + returnIntermediateSteps: options.returnIntermediateSteps === true, + maxIterations: options.maxIterations ?? 10, }); + // Invoke the executor with the given input and system message. + const response = await executor.invoke( + { + input, + system_message: options.systemMessage ?? SYSTEM_MESSAGE, + formatting_instructions: + 'IMPORTANT: Always call `format_final_response` to format your final response!', + }, + { signal: this.getExecutionCancelSignal() }, + ); + + // If memory and outputParser are connected, parse the output. if (memory && outputParser) { const parsedOutput = jsonParse<{ output: Record }>( response.output as string, @@ -314,7 +466,8 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise(); + (fakeOutputParser.getSchema as jest.Mock).mockReturnValue(returnSchema); + return fakeOutputParser; +} + +function createFakeExecuteFunctions(overrides: Partial = {}): IExecuteFunctions { + return { + getNodeParameter: jest + .fn() + .mockImplementation((_arg1: string, _arg2: number, defaultValue?: unknown) => { + return defaultValue; + }), + getNode: jest.fn().mockReturnValue({}), + getInputConnectionData: jest.fn().mockResolvedValue({}), + getInputData: jest.fn().mockReturnValue([]), + continueOnFail: jest.fn().mockReturnValue(false), + logger: { debug: jest.fn() }, + helpers: {}, + ...overrides, + } as unknown as IExecuteFunctions; +} + +describe('getOutputParserSchema', () => { + it('should return a default schema if getSchema returns undefined', () => { + const schema = getOutputParserSchema(getFakeOutputParser(undefined)); + // The default schema requires a "text" field. + expect(() => schema.parse({})).toThrow(); + expect(schema.parse({ text: 'hello' })).toEqual({ text: 'hello' }); + }); + + it('should return the custom schema if provided', () => { + const customSchema = z.object({ custom: z.number() }); + + const schema = getOutputParserSchema(getFakeOutputParser(customSchema)); + expect(() => schema.parse({ custom: 'not a number' })).toThrow(); + expect(schema.parse({ custom: 123 })).toEqual({ custom: 123 }); + }); +}); + +describe('extractBinaryMessages', () => { + it('should extract a binary message from the input data when no id is provided', async () => { + const fakeItem = { + binary: { + img1: { + mimeType: 'image/png', + // simulate that data already includes 'base64' + data: '', + }, + }, + }; + const ctx = createFakeExecuteFunctions({ + getInputData: jest.fn().mockReturnValue([fakeItem]), + }); + + const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0); + // Expect the HumanMessage's content to be an array containing one binary message. + expect(Array.isArray(humanMsg.content)).toBe(true); + expect(humanMsg.content[0]).toEqual({ + type: 'image_url', + image_url: { url: '' }, + }); + }); + + it('should extract a binary message using binary stream if id is provided', async () => { + const fakeItem = { + binary: { + img2: { + mimeType: 'image/jpeg', + id: '1234', + data: 'nonsense', + }, + }, + }; + // Cast fakeHelpers as any to satisfy type requirements. + const fakeHelpers = { + getBinaryStream: jest.fn().mockResolvedValue('stream'), + binaryToBuffer: jest.fn().mockResolvedValue(Buffer.from('fakebufferdata')), + } as unknown as IExecuteFunctions['helpers']; + const ctx = createFakeExecuteFunctions({ + getInputData: jest.fn().mockReturnValue([fakeItem]), + helpers: fakeHelpers, + }); + + const humanMsg: HumanMessage = await extractBinaryMessages(ctx, 0); + // eslint-disable-next-line @typescript-eslint/unbound-method + expect(fakeHelpers.getBinaryStream).toHaveBeenCalledWith('1234'); + // eslint-disable-next-line @typescript-eslint/unbound-method + expect(fakeHelpers.binaryToBuffer).toHaveBeenCalled(); + const expectedUrl = `data:image/jpeg;base64,${Buffer.from('fakebufferdata').toString( + BINARY_ENCODING, + )}`; + expect(humanMsg.content[0]).toEqual({ + type: 'image_url', + image_url: { url: expectedUrl }, + }); + }); +}); + +describe('fixEmptyContentMessage', () => { + it('should replace empty string inputs with empty objects', () => { + // Cast to any to bypass type issues with AgentFinish/AgentAction. + const fakeSteps: ToolsAgentAction[] = [ + { + messageLog: [ + { + content: [{ input: '' }, { input: { already: 'object' } }], + }, + ], + }, + ] as unknown as ToolsAgentAction[]; + const fixed = fixEmptyContentMessage(fakeSteps) as ToolsAgentAction[]; + const messageContent = fixed?.[0]?.messageLog?.[0].content; + + // Type assertion needed since we're extending MessageContentComplex + expect((messageContent?.[0] as { input: unknown })?.input).toEqual({}); + expect((messageContent?.[1] as { input: unknown })?.input).toEqual({ already: 'object' }); + }); +}); + +describe('handleParsedStepOutput', () => { + it('should stringify the output if memory is provided', () => { + const output = { key: 'value' }; + const fakeMemory = mock(); + const result = handleParsedStepOutput(output, fakeMemory); + expect(result.returnValues).toEqual({ output: JSON.stringify(output) }); + expect(result.log).toEqual('Final response formatted'); + }); + + it('should not stringify the output if memory is not provided', () => { + const output = { key: 'value' }; + const result = handleParsedStepOutput(output); + expect(result.returnValues).toEqual(output); + }); +}); + +describe('getChatModel', () => { + it('should return the model if it is a valid chat model', async () => { + // Cast fakeChatModel as any + const fakeChatModel = mock(); + fakeChatModel.bindTools = jest.fn(); + fakeChatModel.lc_namespace = ['chat_models']; + + const ctx = createFakeExecuteFunctions({ + getInputConnectionData: jest.fn().mockResolvedValue(fakeChatModel), + }); + const model = await getChatModel(ctx); + expect(model).toEqual(fakeChatModel); + }); + + it('should throw if the model is not a valid chat model', async () => { + const fakeInvalidModel = mock(); // missing bindTools & lc_namespace + fakeInvalidModel.lc_namespace = []; + const ctx = createFakeExecuteFunctions({ + getInputConnectionData: jest.fn().mockResolvedValue(fakeInvalidModel), + getNode: jest.fn().mockReturnValue({}), + }); + await expect(getChatModel(ctx)).rejects.toThrow(NodeOperationError); + }); +}); + +describe('getOptionalMemory', () => { + it('should return the memory if available', async () => { + const fakeMemory = { some: 'memory' }; + const ctx = createFakeExecuteFunctions({ + getInputConnectionData: jest.fn().mockResolvedValue(fakeMemory), + }); + const memory = await getOptionalMemory(ctx); + expect(memory).toEqual(fakeMemory); + }); +}); + +describe('getTools', () => { + it('should retrieve tools without appending if outputParser is not provided', async () => { + const ctx = createFakeExecuteFunctions(); + const tools = await getTools(ctx); + + expect(tools.length).toEqual(1); + }); + + it('should retrieve tools and append the structured output parser tool if outputParser is provided', async () => { + const fakeOutputParser = getFakeOutputParser(z.object({ text: z.string() })); + const ctx = createFakeExecuteFunctions(); + const tools = await getTools(ctx, fakeOutputParser); + // Our fake getConnectedTools returns one tool; with outputParser, one extra is appended. + expect(tools.length).toEqual(2); + const dynamicTool = tools.find((t) => t.name === 'format_final_response'); + expect(dynamicTool).toBeDefined(); + }); +}); + +describe('prepareMessages', () => { + it('should include a binary message if binary data is present and passthroughBinaryImages is true', async () => { + const fakeItem = { + binary: { + img1: { + mimeType: 'image/png', + data: '', + }, + }, + }; + const ctx = createFakeExecuteFunctions({ + getInputData: jest.fn().mockReturnValue([fakeItem]), + }); + const messages = await prepareMessages(ctx, 0, { + systemMessage: 'Test system', + passthroughBinaryImages: true, + }); + // Check if any message is an instance of HumanMessage + const hasBinaryMessage = messages.some( + (m) => typeof m === 'object' && m instanceof HumanMessage, + ); + expect(hasBinaryMessage).toBe(true); + }); + + it('should not include a binary message if no binary data is present', async () => { + const fakeItem = { json: {} }; // no binary key + const ctx = createFakeExecuteFunctions({ + getInputData: jest.fn().mockReturnValue([fakeItem]), + }); + const messages = await prepareMessages(ctx, 0, { + systemMessage: 'Test system', + passthroughBinaryImages: true, + }); + const hasHumanMessage = messages.some((m) => m instanceof HumanMessage); + expect(hasHumanMessage).toBe(false); + }); +}); + +describe('preparePrompt', () => { + it('should return a ChatPromptTemplate instance', () => { + const sampleMessages: BaseMessagePromptTemplateLike[] = [ + ['system', 'Test'], + ['human', 'Hello'], + ]; + const prompt = preparePrompt(sampleMessages); + + expect(prompt).toBeDefined(); + }); +}); diff --git a/packages/@n8n/nodes-langchain/nodes/chains/ChainLLM/ChainLlm.node.ts b/packages/@n8n/nodes-langchain/nodes/chains/ChainLLM/ChainLlm.node.ts index 45d3932309..fcc75059fb 100644 --- a/packages/@n8n/nodes-langchain/nodes/chains/ChainLLM/ChainLlm.node.ts +++ b/packages/@n8n/nodes-langchain/nodes/chains/ChainLLM/ChainLlm.node.ts @@ -524,16 +524,16 @@ export class ChainLlm implements INodeType { const items = this.getInputData(); const returnData: INodeExecutionData[] = []; - const llm = (await this.getInputConnectionData( - NodeConnectionType.AiLanguageModel, - 0, - )) as BaseLanguageModel; - - const outputParsers = await getOptionalOutputParsers(this); for (let itemIndex = 0; itemIndex < items.length; itemIndex++) { try { let prompt: string; + const llm = (await this.getInputConnectionData( + NodeConnectionType.AiLanguageModel, + 0, + )) as BaseLanguageModel; + + const outputParsers = await getOptionalOutputParsers(this); if (this.getNode().typeVersion <= 1.3) { prompt = this.getNodeParameter('prompt', itemIndex) as string; } else { diff --git a/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts b/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts index e20128a702..e38ce86980 100644 --- a/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts +++ b/packages/@n8n/nodes-langchain/nodes/chains/ChainRetrievalQA/ChainRetrievalQa.node.ts @@ -163,23 +163,21 @@ export class ChainRetrievalQa implements INodeType { async execute(this: IExecuteFunctions): Promise { this.logger.debug('Executing Retrieval QA Chain'); - const model = (await this.getInputConnectionData( - NodeConnectionType.AiLanguageModel, - 0, - )) as BaseLanguageModel; - - const retriever = (await this.getInputConnectionData( - NodeConnectionType.AiRetriever, - 0, - )) as BaseRetriever; - const items = this.getInputData(); - const returnData: INodeExecutionData[] = []; - // Run for each item for (let itemIndex = 0; itemIndex < items.length; itemIndex++) { try { + const model = (await this.getInputConnectionData( + NodeConnectionType.AiLanguageModel, + 0, + )) as BaseLanguageModel; + + const retriever = (await this.getInputConnectionData( + NodeConnectionType.AiRetriever, + 0, + )) as BaseRetriever; + let query; if (this.getNode().typeVersion <= 1.2) { @@ -226,7 +224,9 @@ export class ChainRetrievalQa implements INodeType { const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters); - const response = await chain.withConfig(getTracingConfig(this)).invoke({ query }); + const response = await chain + .withConfig(getTracingConfig(this)) + .invoke({ query }, { signal: this.getExecutionCancelSignal() }); returnData.push({ json: { response } }); } catch (error) { if (this.continueOnFail()) { diff --git a/packages/@n8n/nodes-langchain/nodes/chains/ChainSummarization/V2/ChainSummarizationV2.node.ts b/packages/@n8n/nodes-langchain/nodes/chains/ChainSummarization/V2/ChainSummarizationV2.node.ts index ff6dadde59..4e17adb18d 100644 --- a/packages/@n8n/nodes-langchain/nodes/chains/ChainSummarization/V2/ChainSummarizationV2.node.ts +++ b/packages/@n8n/nodes-langchain/nodes/chains/ChainSummarization/V2/ChainSummarizationV2.node.ts @@ -321,16 +321,16 @@ export class ChainSummarizationV2 implements INodeType { | 'simple' | 'advanced'; - const model = (await this.getInputConnectionData( - NodeConnectionType.AiLanguageModel, - 0, - )) as BaseLanguageModel; - const items = this.getInputData(); const returnData: INodeExecutionData[] = []; for (let itemIndex = 0; itemIndex < items.length; itemIndex++) { try { + const model = (await this.getInputConnectionData( + NodeConnectionType.AiLanguageModel, + 0, + )) as BaseLanguageModel; + const summarizationMethodAndPrompts = this.getNodeParameter( 'options.summarizationMethodAndPrompts.values', itemIndex, @@ -411,9 +411,12 @@ export class ChainSummarizationV2 implements INodeType { } const processedItem = await processor.processItem(item, itemIndex); - const response = await chain.call({ - input_documents: processedItem, - }); + const response = await chain.invoke( + { + input_documents: processedItem, + }, + { signal: this.getExecutionCancelSignal() }, + ); returnData.push({ json: { response } }); } } catch (error) {