mirror of
https://github.com/n8n-io/n8n.git
synced 2025-01-12 13:27:31 -08:00
fix(AI Agent Node): Fix tools agent when using memory and Anthropic models (#10513)
This commit is contained in:
parent
8b5c333d3d
commit
746e7b89f7
|
@ -1,7 +1,7 @@
|
|||
import { BINARY_ENCODING, NodeConnectionType, NodeOperationError } from 'n8n-workflow';
|
||||
import type { IExecuteFunctions, INodeExecutionData } from 'n8n-workflow';
|
||||
|
||||
import type { AgentAction, AgentFinish, AgentStep } from 'langchain/agents';
|
||||
import type { AgentAction, AgentFinish } from 'langchain/agents';
|
||||
import { AgentExecutor, createToolCallingAgent } from 'langchain/agents';
|
||||
import type { BaseChatMemory } from '@langchain/community/memory/chat_memory';
|
||||
import type { BaseMessagePromptTemplateLike } from '@langchain/core/prompts';
|
||||
|
@ -9,12 +9,12 @@ import { ChatPromptTemplate } from '@langchain/core/prompts';
|
|||
import { omit } from 'lodash';
|
||||
import type { Tool } from '@langchain/core/tools';
|
||||
import { DynamicStructuredTool } from '@langchain/core/tools';
|
||||
import { RunnableSequence } from '@langchain/core/runnables';
|
||||
import type { ZodObject } from 'zod';
|
||||
import { z } from 'zod';
|
||||
import type { BaseOutputParser, StructuredOutputParser } from '@langchain/core/output_parsers';
|
||||
import { OutputFixingParser } from 'langchain/output_parsers';
|
||||
import { HumanMessage } from '@langchain/core/messages';
|
||||
import { RunnableSequence } from '@langchain/core/runnables';
|
||||
import {
|
||||
isChatInstance,
|
||||
getPromptInputByType,
|
||||
|
@ -93,7 +93,69 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
const tools = (await getConnectedTools(this, true, false)) as Array<DynamicStructuredTool | Tool>;
|
||||
const outputParser = (await getOptionalOutputParsers(this))?.[0];
|
||||
let structuredOutputParserTool: DynamicStructuredTool | undefined;
|
||||
/**
|
||||
* Ensures consistent handling of outputs regardless of the model used,
|
||||
* providing a unified output format for further processing.
|
||||
*
|
||||
* This method is necessary to handle different output formats from various language models.
|
||||
* Specifically, it checks if the agent step is the final step (contains returnValues) and determines
|
||||
* if the output is a simple string (e.g., from OpenAI models) or an array of outputs (e.g., from Anthropic models).
|
||||
*
|
||||
* Examples:
|
||||
* 1. Anthropic model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": [
|
||||
* {
|
||||
* "index": 0,
|
||||
* "type": "text",
|
||||
* "text": "The result of the calculation is approximately 1001.8166..."
|
||||
* }
|
||||
* ]
|
||||
* }
|
||||
*```
|
||||
* 2. OpenAI model output:
|
||||
* ```json
|
||||
* {
|
||||
* "output": "The result of the calculation is approximately 1001.82..."
|
||||
* }
|
||||
* ```
|
||||
*
|
||||
* @param steps - The agent finish or agent action steps.
|
||||
* @returns The modified agent finish steps or the original steps.
|
||||
*/
|
||||
function handleAgentFinishOutput(steps: AgentFinish | AgentAction[]) {
|
||||
// Check if the steps contain multiple outputs
|
||||
type AgentMultiOutputFinish = AgentFinish & {
|
||||
returnValues: { output: Array<{ text: string; type: string; index: number }> };
|
||||
};
|
||||
const agentFinishSteps = steps as AgentMultiOutputFinish | AgentFinish;
|
||||
|
||||
if (agentFinishSteps.returnValues) {
|
||||
const isMultiOutput = Array.isArray(agentFinishSteps.returnValues?.output);
|
||||
|
||||
if (isMultiOutput) {
|
||||
// Define the type for each item in the multi-output array
|
||||
type MultiOutputItem = { index: number; type: string; text: string };
|
||||
const multiOutputSteps = agentFinishSteps.returnValues.output as MultiOutputItem[];
|
||||
|
||||
// Check if all items in the multi-output array are of type 'text'
|
||||
const isTextOnly = (multiOutputSteps ?? []).every((output) => 'text' in output);
|
||||
|
||||
if (isTextOnly) {
|
||||
// If all items are of type 'text', merge them into a single string
|
||||
agentFinishSteps.returnValues.output = multiOutputSteps
|
||||
.map((output) => output.text)
|
||||
.join('\n')
|
||||
.trim();
|
||||
}
|
||||
return agentFinishSteps;
|
||||
}
|
||||
}
|
||||
|
||||
// If the steps do not contain multiple outputs, return them as is
|
||||
return agentFinishSteps;
|
||||
}
|
||||
async function agentStepsParser(
|
||||
steps: AgentFinish | AgentAction[],
|
||||
): Promise<AgentFinish | AgentAction[]> {
|
||||
|
@ -112,7 +174,6 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
};
|
||||
}
|
||||
}
|
||||
|
||||
// If the steps are an AgentFinish and the outputParser is defined it must mean that the LLM didn't use `format_final_response` tool so we will parse the output manually
|
||||
if (outputParser && typeof steps === 'object' && (steps as AgentFinish).returnValues) {
|
||||
const finalResponse = (steps as AgentFinish).returnValues;
|
||||
|
@ -126,7 +187,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
log: 'Final response formatted',
|
||||
};
|
||||
}
|
||||
return steps;
|
||||
return handleAgentFinishOutput(steps);
|
||||
}
|
||||
|
||||
if (outputParser) {
|
||||
|
@ -172,9 +233,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
});
|
||||
agent.streamRunnable = false;
|
||||
|
||||
const runnableAgent = RunnableSequence.from<{
|
||||
steps: AgentStep[];
|
||||
}>([agent, agentStepsParser]);
|
||||
const runnableAgent = RunnableSequence.from([agent, agentStepsParser]);
|
||||
|
||||
const executor = AgentExecutor.fromAgentAndTools({
|
||||
agent: runnableAgent,
|
||||
|
@ -196,7 +255,7 @@ export async function toolsAgentExecute(this: IExecuteFunctions): Promise<INodeE
|
|||
});
|
||||
|
||||
if (input === undefined) {
|
||||
throw new NodeOperationError(this.getNode(), 'The ‘text parameter is empty.');
|
||||
throw new NodeOperationError(this.getNode(), 'The ‘text‘ parameter is empty.');
|
||||
}
|
||||
|
||||
// OpenAI doesn't allow empty tools array so we will provide a more user-friendly error message
|
||||
|
|
Loading…
Reference in a new issue