mirror of
https://github.com/n8n-io/n8n.git
synced 2025-03-05 20:50:17 -08:00
Merge branch 'master' of https://github.com/n8n-io/n8n into node-2015-google-calendar-confusing-errors
This commit is contained in:
commit
85cb052ff9
|
@ -2,7 +2,7 @@
|
|||
* Getters
|
||||
*/
|
||||
|
||||
import { getVisibleSelect } from '../utils';
|
||||
import { getVisibleSelect } from '../utils/popper';
|
||||
|
||||
export function getCredentialSelect(eq = 0) {
|
||||
return cy.getByTestId('node-credentials-select').eq(eq);
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import { getManualChatModal } from './modals/chat-modal';
|
||||
import { clickGetBackToCanvas, getParameterInputByName } from './ndv';
|
||||
import { ROUTES } from '../constants';
|
||||
|
||||
/**
|
||||
|
@ -127,7 +128,7 @@ export function navigateToNewWorkflowPage(preventNodeViewUnload = true) {
|
|||
});
|
||||
}
|
||||
|
||||
export function addSupplementalNodeToParent(
|
||||
function connectNodeToParent(
|
||||
nodeName: string,
|
||||
endpointType: EndpointType,
|
||||
parentNodeName: string,
|
||||
|
@ -141,6 +142,15 @@ export function addSupplementalNodeToParent(
|
|||
} else {
|
||||
getNodeCreatorItems().contains(nodeName).click();
|
||||
}
|
||||
}
|
||||
|
||||
export function addSupplementalNodeToParent(
|
||||
nodeName: string,
|
||||
endpointType: EndpointType,
|
||||
parentNodeName: string,
|
||||
exactMatch = false,
|
||||
) {
|
||||
connectNodeToParent(nodeName, endpointType, parentNodeName, exactMatch);
|
||||
getConnectionBySourceAndTarget(parentNodeName, nodeName).should('exist');
|
||||
}
|
||||
|
||||
|
@ -160,6 +170,15 @@ export function addToolNodeToParent(nodeName: string, parentNodeName: string) {
|
|||
addSupplementalNodeToParent(nodeName, 'ai_tool', parentNodeName);
|
||||
}
|
||||
|
||||
export function addVectorStoreToolToParent(nodeName: string, parentNodeName: string) {
|
||||
connectNodeToParent(nodeName, 'ai_tool', parentNodeName, false);
|
||||
getParameterInputByName('mode')
|
||||
.find('input')
|
||||
.should('have.value', 'Retrieve Documents (As Tool for AI Agent)');
|
||||
clickGetBackToCanvas();
|
||||
getConnectionBySourceAndTarget(nodeName, parentNodeName).should('exist');
|
||||
}
|
||||
|
||||
export function addOutputParserNodeToParent(nodeName: string, parentNodeName: string) {
|
||||
addSupplementalNodeToParent(nodeName, 'ai_outputParser', parentNodeName);
|
||||
}
|
||||
|
|
|
@ -1,10 +1,12 @@
|
|||
import { clickGetBackToCanvas } from '../composables/ndv';
|
||||
import {
|
||||
addNodeToCanvas,
|
||||
addRetrieverNodeToParent,
|
||||
addVectorStoreNodeToParent,
|
||||
addVectorStoreToolToParent,
|
||||
getNodeCreatorItems,
|
||||
} from '../composables/workflow';
|
||||
import { IF_NODE_NAME } from '../constants';
|
||||
import { AGENT_NODE_NAME, IF_NODE_NAME, MANUAL_CHAT_TRIGGER_NODE_NAME } from '../constants';
|
||||
import { NodeCreator } from '../pages/features/node-creator';
|
||||
import { NDV } from '../pages/ndv';
|
||||
import { WorkflowPage as WorkflowPageClass } from '../pages/workflow';
|
||||
|
@ -536,7 +538,7 @@ describe('Node Creator', () => {
|
|||
});
|
||||
});
|
||||
|
||||
it('should add node directly for sub-connection', () => {
|
||||
it('should add node directly for sub-connection as vector store', () => {
|
||||
addNodeToCanvas('Question and Answer Chain', true);
|
||||
addRetrieverNodeToParent('Vector Store Retriever', 'Question and Answer Chain');
|
||||
cy.realPress('Escape');
|
||||
|
@ -544,4 +546,12 @@ describe('Node Creator', () => {
|
|||
cy.realPress('Escape');
|
||||
WorkflowPage.getters.canvasNodes().should('have.length', 4);
|
||||
});
|
||||
|
||||
it('should add node directly for sub-connection as tool', () => {
|
||||
addNodeToCanvas(MANUAL_CHAT_TRIGGER_NODE_NAME, true);
|
||||
addNodeToCanvas(AGENT_NODE_NAME, true, true);
|
||||
clickGetBackToCanvas();
|
||||
|
||||
addVectorStoreToolToParent('In-Memory Vector Store', AGENT_NODE_NAME);
|
||||
});
|
||||
});
|
||||
|
|
|
@ -15,15 +15,15 @@ import { getConnectionHintNoticeField } from '@utils/sharedFields';
|
|||
|
||||
export class ToolVectorStore implements INodeType {
|
||||
description: INodeTypeDescription = {
|
||||
displayName: 'Vector Store Tool',
|
||||
displayName: 'Vector Store Question Answer Tool',
|
||||
name: 'toolVectorStore',
|
||||
icon: 'fa:database',
|
||||
iconColor: 'black',
|
||||
group: ['transform'],
|
||||
version: [1],
|
||||
description: 'Retrieve context from vector store',
|
||||
description: 'Answer questions with a vector store',
|
||||
defaults: {
|
||||
name: 'Vector Store Tool',
|
||||
name: 'Answer questions with a vector store',
|
||||
},
|
||||
codex: {
|
||||
categories: ['AI'],
|
||||
|
@ -60,20 +60,23 @@ export class ToolVectorStore implements INodeType {
|
|||
properties: [
|
||||
getConnectionHintNoticeField([NodeConnectionType.AiAgent]),
|
||||
{
|
||||
displayName: 'Name',
|
||||
displayName: 'Data Name',
|
||||
name: 'name',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: 'e.g. company_knowledge_base',
|
||||
placeholder: 'e.g. users_info',
|
||||
validateType: 'string-alphanumeric',
|
||||
description: 'Name of the vector store',
|
||||
description:
|
||||
'Name of the data in vector store. This will be used to fill this tool description: Useful for when you need to answer questions about [name]. Whenever you need information about [data description], you should ALWAYS use this. Input should be a fully formed question.',
|
||||
},
|
||||
{
|
||||
displayName: 'Description',
|
||||
displayName: 'Description of Data',
|
||||
name: 'description',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: 'Retrieves data about [insert information about your data here]...',
|
||||
placeholder: "[Describe your data here, e.g. a user's name, email, etc.]",
|
||||
description:
|
||||
'Describe the data in vector store. This will be used to fill this tool description: Useful for when you need to answer questions about [name]. Whenever you need information about [data description], you should ALWAYS use this. Input should be a fully formed question.',
|
||||
typeOptions: {
|
||||
rows: 3,
|
||||
},
|
||||
|
|
|
@ -228,7 +228,7 @@ export class VectorStorePGVector extends createVectorStoreNode({
|
|||
testedBy: 'postgresConnectionTest',
|
||||
},
|
||||
],
|
||||
operationModes: ['load', 'insert', 'retrieve'],
|
||||
operationModes: ['load', 'insert', 'retrieve', 'retrieve-as-tool'],
|
||||
},
|
||||
sharedFields,
|
||||
insertFields,
|
||||
|
|
|
@ -65,7 +65,7 @@ export class VectorStorePinecone extends createVectorStoreNode({
|
|||
required: true,
|
||||
},
|
||||
],
|
||||
operationModes: ['load', 'insert', 'retrieve', 'update'],
|
||||
operationModes: ['load', 'insert', 'retrieve', 'update', 'retrieve-as-tool'],
|
||||
},
|
||||
methods: { listSearch: { pineconeIndexSearch } },
|
||||
retrieveFields,
|
||||
|
|
|
@ -55,7 +55,7 @@ export class VectorStoreSupabase extends createVectorStoreNode({
|
|||
required: true,
|
||||
},
|
||||
],
|
||||
operationModes: ['load', 'insert', 'retrieve', 'update'],
|
||||
operationModes: ['load', 'insert', 'retrieve', 'update', 'retrieve-as-tool'],
|
||||
},
|
||||
methods: {
|
||||
listSearch: { supabaseTableNameSearch },
|
||||
|
|
|
@ -0,0 +1,161 @@
|
|||
import type { DocumentInterface } from '@langchain/core/documents';
|
||||
import type { Embeddings } from '@langchain/core/embeddings';
|
||||
import type { VectorStore } from '@langchain/core/vectorstores';
|
||||
import { mock } from 'jest-mock-extended';
|
||||
import type { DynamicTool } from 'langchain/tools';
|
||||
import type { ISupplyDataFunctions, NodeParameterValueType } from 'n8n-workflow';
|
||||
|
||||
import type { VectorStoreNodeConstructorArgs } from './createVectorStoreNode';
|
||||
import { createVectorStoreNode } from './createVectorStoreNode';
|
||||
|
||||
jest.mock('@utils/logWrapper', () => ({
|
||||
logWrapper: jest.fn().mockImplementation((val: DynamicTool) => ({ logWrapped: val })),
|
||||
}));
|
||||
|
||||
const DEFAULT_PARAMETERS = {
|
||||
options: {},
|
||||
topK: 1,
|
||||
};
|
||||
|
||||
const MOCK_DOCUMENTS: Array<[DocumentInterface, number]> = [
|
||||
[
|
||||
{
|
||||
pageContent: 'first page',
|
||||
metadata: {
|
||||
id: 123,
|
||||
},
|
||||
},
|
||||
0,
|
||||
],
|
||||
[
|
||||
{
|
||||
pageContent: 'second page',
|
||||
metadata: {
|
||||
id: 567,
|
||||
},
|
||||
},
|
||||
0,
|
||||
],
|
||||
];
|
||||
|
||||
const MOCK_SEARCH_VALUE = 'search value';
|
||||
const MOCK_EMBEDDED_SEARCH_VALUE = [1, 2, 3];
|
||||
|
||||
describe('createVectorStoreNode', () => {
|
||||
const vectorStore = mock<VectorStore>({
|
||||
similaritySearchVectorWithScore: jest.fn().mockResolvedValue(MOCK_DOCUMENTS),
|
||||
});
|
||||
|
||||
const vectorStoreNodeArgs = mock<VectorStoreNodeConstructorArgs>({
|
||||
sharedFields: [],
|
||||
insertFields: [],
|
||||
loadFields: [],
|
||||
retrieveFields: [],
|
||||
updateFields: [],
|
||||
getVectorStoreClient: jest.fn().mockReturnValue(vectorStore),
|
||||
});
|
||||
|
||||
const embeddings = mock<Embeddings>({
|
||||
embedQuery: jest.fn().mockResolvedValue(MOCK_EMBEDDED_SEARCH_VALUE),
|
||||
});
|
||||
|
||||
const context = mock<ISupplyDataFunctions>({
|
||||
getNodeParameter: jest.fn(),
|
||||
getInputConnectionData: jest.fn().mockReturnValue(embeddings),
|
||||
});
|
||||
|
||||
describe('retrieve mode', () => {
|
||||
it('supplies vector store as data', async () => {
|
||||
// ARRANGE
|
||||
const parameters: Record<string, NodeParameterValueType | object> = {
|
||||
...DEFAULT_PARAMETERS,
|
||||
mode: 'retrieve',
|
||||
};
|
||||
context.getNodeParameter.mockImplementation(
|
||||
(parameterName: string): NodeParameterValueType | object => parameters[parameterName],
|
||||
);
|
||||
|
||||
// ACT
|
||||
const VectorStoreNodeType = createVectorStoreNode(vectorStoreNodeArgs);
|
||||
const nodeType = new VectorStoreNodeType();
|
||||
const data = await nodeType.supplyData.call(context, 1);
|
||||
const wrappedVectorStore = (data.response as { logWrapped: VectorStore }).logWrapped;
|
||||
|
||||
// ASSERT
|
||||
expect(wrappedVectorStore).toEqual(vectorStore);
|
||||
expect(vectorStoreNodeArgs.getVectorStoreClient).toHaveBeenCalled();
|
||||
});
|
||||
});
|
||||
|
||||
describe('retrieve-as-tool mode', () => {
|
||||
it('supplies DynamicTool that queries vector store and returns documents with metadata', async () => {
|
||||
// ARRANGE
|
||||
const parameters: Record<string, NodeParameterValueType | object> = {
|
||||
...DEFAULT_PARAMETERS,
|
||||
mode: 'retrieve-as-tool',
|
||||
description: 'tool description',
|
||||
toolName: 'tool name',
|
||||
includeDocumentMetadata: true,
|
||||
};
|
||||
context.getNodeParameter.mockImplementation(
|
||||
(parameterName: string): NodeParameterValueType | object => parameters[parameterName],
|
||||
);
|
||||
|
||||
// ACT
|
||||
const VectorStoreNodeType = createVectorStoreNode(vectorStoreNodeArgs);
|
||||
const nodeType = new VectorStoreNodeType();
|
||||
const data = await nodeType.supplyData.call(context, 1);
|
||||
const tool = (data.response as { logWrapped: DynamicTool }).logWrapped;
|
||||
const output = await tool?.func(MOCK_SEARCH_VALUE);
|
||||
|
||||
// ASSERT
|
||||
expect(tool?.getName()).toEqual(parameters.toolName);
|
||||
expect(tool?.description).toEqual(parameters.toolDescription);
|
||||
expect(embeddings.embedQuery).toHaveBeenCalledWith(MOCK_SEARCH_VALUE);
|
||||
expect(vectorStore.similaritySearchVectorWithScore).toHaveBeenCalledWith(
|
||||
MOCK_EMBEDDED_SEARCH_VALUE,
|
||||
parameters.topK,
|
||||
parameters.filter,
|
||||
);
|
||||
expect(output).toEqual([
|
||||
{ type: 'text', text: JSON.stringify(MOCK_DOCUMENTS[0][0]) },
|
||||
{ type: 'text', text: JSON.stringify(MOCK_DOCUMENTS[1][0]) },
|
||||
]);
|
||||
});
|
||||
|
||||
it('supplies DynamicTool that queries vector store and returns documents without metadata', async () => {
|
||||
// ARRANGE
|
||||
const parameters: Record<string, NodeParameterValueType | object> = {
|
||||
...DEFAULT_PARAMETERS,
|
||||
mode: 'retrieve-as-tool',
|
||||
description: 'tool description',
|
||||
toolName: 'tool name',
|
||||
includeDocumentMetadata: false,
|
||||
};
|
||||
context.getNodeParameter.mockImplementation(
|
||||
(parameterName: string): NodeParameterValueType | object => parameters[parameterName],
|
||||
);
|
||||
|
||||
// ACT
|
||||
const VectorStoreNodeType = createVectorStoreNode(vectorStoreNodeArgs);
|
||||
const nodeType = new VectorStoreNodeType();
|
||||
const data = await nodeType.supplyData.call(context, 1);
|
||||
const tool = (data.response as { logWrapped: DynamicTool }).logWrapped;
|
||||
const output = await tool?.func(MOCK_SEARCH_VALUE);
|
||||
|
||||
// ASSERT
|
||||
expect(tool?.getName()).toEqual(parameters.toolName);
|
||||
expect(tool?.description).toEqual(parameters.toolDescription);
|
||||
expect(embeddings.embedQuery).toHaveBeenCalledWith(MOCK_SEARCH_VALUE);
|
||||
expect(vectorStore.similaritySearchVectorWithScore).toHaveBeenCalledWith(
|
||||
MOCK_EMBEDDED_SEARCH_VALUE,
|
||||
parameters.topK,
|
||||
parameters.filter,
|
||||
);
|
||||
expect(output).toEqual([
|
||||
{ type: 'text', text: JSON.stringify({ pageContent: MOCK_DOCUMENTS[0][0].pageContent }) },
|
||||
{ type: 'text', text: JSON.stringify({ pageContent: MOCK_DOCUMENTS[1][0].pageContent }) },
|
||||
]);
|
||||
});
|
||||
});
|
||||
});
|
|
@ -3,6 +3,7 @@
|
|||
import type { Document } from '@langchain/core/documents';
|
||||
import type { Embeddings } from '@langchain/core/embeddings';
|
||||
import type { VectorStore } from '@langchain/core/vectorstores';
|
||||
import { DynamicTool } from 'langchain/tools';
|
||||
import { NodeConnectionType, NodeOperationError } from 'n8n-workflow';
|
||||
import type {
|
||||
IExecuteFunctions,
|
||||
|
@ -28,9 +29,14 @@ import { getConnectionHintNoticeField } from '@utils/sharedFields';
|
|||
|
||||
import { processDocument } from './processDocuments';
|
||||
|
||||
type NodeOperationMode = 'insert' | 'load' | 'retrieve' | 'update';
|
||||
type NodeOperationMode = 'insert' | 'load' | 'retrieve' | 'update' | 'retrieve-as-tool';
|
||||
|
||||
const DEFAULT_OPERATION_MODES: NodeOperationMode[] = ['load', 'insert', 'retrieve'];
|
||||
const DEFAULT_OPERATION_MODES: NodeOperationMode[] = [
|
||||
'load',
|
||||
'insert',
|
||||
'retrieve',
|
||||
'retrieve-as-tool',
|
||||
];
|
||||
|
||||
interface NodeMeta {
|
||||
displayName: string;
|
||||
|
@ -43,7 +49,7 @@ interface NodeMeta {
|
|||
operationModes?: NodeOperationMode[];
|
||||
}
|
||||
|
||||
interface VectorStoreNodeConstructorArgs {
|
||||
export interface VectorStoreNodeConstructorArgs {
|
||||
meta: NodeMeta;
|
||||
methods?: {
|
||||
listSearch?: {
|
||||
|
@ -102,10 +108,18 @@ function getOperationModeOptions(args: VectorStoreNodeConstructorArgs): INodePro
|
|||
action: 'Add documents to vector store',
|
||||
},
|
||||
{
|
||||
name: 'Retrieve Documents (For Agent/Chain)',
|
||||
name: 'Retrieve Documents (As Vector Store for AI Agent)',
|
||||
value: 'retrieve',
|
||||
description: 'Retrieve documents from vector store to be used with AI nodes',
|
||||
action: 'Retrieve documents for AI processing',
|
||||
description: 'Retrieve documents from vector store to be used as vector store with AI nodes',
|
||||
action: 'Retrieve documents for AI processing as Vector Store',
|
||||
outputConnectionType: NodeConnectionType.AiVectorStore,
|
||||
},
|
||||
{
|
||||
name: 'Retrieve Documents (As Tool for AI Agent)',
|
||||
value: 'retrieve-as-tool',
|
||||
description: 'Retrieve documents from vector store to be used as tool with AI nodes',
|
||||
action: 'Retrieve documents for AI processing as Tool',
|
||||
outputConnectionType: NodeConnectionType.AiTool,
|
||||
},
|
||||
{
|
||||
name: 'Update Documents',
|
||||
|
@ -136,7 +150,8 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
codex: {
|
||||
categories: ['AI'],
|
||||
subcategories: {
|
||||
AI: ['Vector Stores', 'Root Nodes'],
|
||||
AI: ['Vector Stores', 'Tools', 'Root Nodes'],
|
||||
Tools: ['Other Tools'],
|
||||
},
|
||||
resources: {
|
||||
primaryDocumentation: [
|
||||
|
@ -153,6 +168,10 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
const mode = parameters?.mode;
|
||||
const inputs = [{ displayName: "Embedding", type: "${NodeConnectionType.AiEmbedding}", required: true, maxConnections: 1}]
|
||||
|
||||
if (mode === 'retrieve-as-tool') {
|
||||
return inputs;
|
||||
}
|
||||
|
||||
if (['insert', 'load', 'update'].includes(mode)) {
|
||||
inputs.push({ displayName: "", type: "${NodeConnectionType.Main}"})
|
||||
}
|
||||
|
@ -166,6 +185,11 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
outputs: `={{
|
||||
((parameters) => {
|
||||
const mode = parameters?.mode ?? 'retrieve';
|
||||
|
||||
if (mode === 'retrieve-as-tool') {
|
||||
return [{ displayName: "Tool", type: "${NodeConnectionType.AiTool}"}]
|
||||
}
|
||||
|
||||
if (mode === 'retrieve') {
|
||||
return [{ displayName: "Vector Store", type: "${NodeConnectionType.AiVectorStore}"}]
|
||||
}
|
||||
|
@ -189,6 +213,37 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Name',
|
||||
name: 'toolName',
|
||||
type: 'string',
|
||||
default: '',
|
||||
required: true,
|
||||
description: 'Name of the vector store',
|
||||
placeholder: 'e.g. company_knowledge_base',
|
||||
validateType: 'string-alphanumeric',
|
||||
displayOptions: {
|
||||
show: {
|
||||
mode: ['retrieve-as-tool'],
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Description',
|
||||
name: 'toolDescription',
|
||||
type: 'string',
|
||||
default: '',
|
||||
required: true,
|
||||
typeOptions: { rows: 2 },
|
||||
description:
|
||||
'Explain to the LLM what this tool does, a good, specific description would allow LLMs to produce expected results much more often',
|
||||
placeholder: `e.g. ${args.meta.description}`,
|
||||
displayOptions: {
|
||||
show: {
|
||||
mode: ['retrieve-as-tool'],
|
||||
},
|
||||
},
|
||||
},
|
||||
...args.sharedFields,
|
||||
...transformDescriptionForOperationMode(args.insertFields ?? [], 'insert'),
|
||||
// Prompt and topK are always used for the load operation
|
||||
|
@ -214,7 +269,19 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
description: 'Number of top results to fetch from vector store',
|
||||
displayOptions: {
|
||||
show: {
|
||||
mode: ['load'],
|
||||
mode: ['load', 'retrieve-as-tool'],
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Include Metadata',
|
||||
name: 'includeDocumentMetadata',
|
||||
type: 'boolean',
|
||||
default: true,
|
||||
description: 'Whether or not to include document metadata',
|
||||
displayOptions: {
|
||||
show: {
|
||||
mode: ['load', 'retrieve-as-tool'],
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -271,10 +338,16 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
filter,
|
||||
);
|
||||
|
||||
const includeDocumentMetadata = this.getNodeParameter(
|
||||
'includeDocumentMetadata',
|
||||
itemIndex,
|
||||
true,
|
||||
) as boolean;
|
||||
|
||||
const serializedDocs = docs.map(([doc, score]) => {
|
||||
const document = {
|
||||
metadata: doc.metadata,
|
||||
pageContent: doc.pageContent,
|
||||
...(includeDocumentMetadata ? { metadata: doc.metadata } : {}),
|
||||
};
|
||||
|
||||
return {
|
||||
|
@ -381,12 +454,12 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Only the "load" and "insert" operation modes are supported with execute',
|
||||
'Only the "load", "update" and "insert" operation modes are supported with execute',
|
||||
);
|
||||
}
|
||||
|
||||
async supplyData(this: ISupplyDataFunctions, itemIndex: number): Promise<SupplyData> {
|
||||
const mode = this.getNodeParameter('mode', 0) as 'load' | 'insert' | 'retrieve';
|
||||
const mode = this.getNodeParameter('mode', 0) as NodeOperationMode;
|
||||
const filter = getMetadataFiltersValues(this, itemIndex);
|
||||
const embeddings = (await this.getInputConnectionData(
|
||||
NodeConnectionType.AiEmbedding,
|
||||
|
@ -400,9 +473,54 @@ export const createVectorStoreNode = (args: VectorStoreNodeConstructorArgs) =>
|
|||
};
|
||||
}
|
||||
|
||||
if (mode === 'retrieve-as-tool') {
|
||||
const toolDescription = this.getNodeParameter('toolDescription', itemIndex) as string;
|
||||
const toolName = this.getNodeParameter('toolName', itemIndex) as string;
|
||||
const topK = this.getNodeParameter('topK', itemIndex, 4) as number;
|
||||
const includeDocumentMetadata = this.getNodeParameter(
|
||||
'includeDocumentMetadata',
|
||||
itemIndex,
|
||||
true,
|
||||
) as boolean;
|
||||
|
||||
const vectorStoreTool = new DynamicTool({
|
||||
name: toolName,
|
||||
description: toolDescription,
|
||||
func: async (input) => {
|
||||
const vectorStore = await args.getVectorStoreClient(
|
||||
this,
|
||||
filter,
|
||||
embeddings,
|
||||
itemIndex,
|
||||
);
|
||||
const embeddedPrompt = await embeddings.embedQuery(input);
|
||||
const documents = await vectorStore.similaritySearchVectorWithScore(
|
||||
embeddedPrompt,
|
||||
topK,
|
||||
filter,
|
||||
);
|
||||
return documents
|
||||
.map((document) => {
|
||||
if (includeDocumentMetadata) {
|
||||
return { type: 'text', text: JSON.stringify(document[0]) };
|
||||
}
|
||||
return {
|
||||
type: 'text',
|
||||
text: JSON.stringify({ pageContent: document[0].pageContent }),
|
||||
};
|
||||
})
|
||||
.filter((document) => !!document);
|
||||
},
|
||||
});
|
||||
|
||||
return {
|
||||
response: logWrapper(vectorStoreTool, this),
|
||||
};
|
||||
}
|
||||
|
||||
throw new NodeOperationError(
|
||||
this.getNode(),
|
||||
'Only the "retrieve" operation mode is supported to supply data',
|
||||
'Only the "retrieve" and "retrieve-as-tool" operation mode is supported to supply data',
|
||||
);
|
||||
}
|
||||
};
|
||||
|
|
|
@ -720,6 +720,7 @@ export interface ActionTypeDescription extends SimplifiedNodeType {
|
|||
displayOptions?: IDisplayOptions;
|
||||
values?: IDataObject;
|
||||
actionKey: string;
|
||||
outputConnectionType?: NodeConnectionType;
|
||||
codex: {
|
||||
label: string;
|
||||
categories: string[];
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
<script setup lang="ts">
|
||||
import { camelCase } from 'lodash-es';
|
||||
import { computed } from 'vue';
|
||||
import type { INodeCreateElement, NodeFilterType } from '@/Interface';
|
||||
import type { INodeCreateElement, NodeCreateElement, NodeFilterType } from '@/Interface';
|
||||
import {
|
||||
TRIGGER_NODE_CREATOR_VIEW,
|
||||
HTTP_REQUEST_NODE_TYPE,
|
||||
|
@ -25,6 +25,8 @@ import NoResults from '../Panel/NoResults.vue';
|
|||
import { useI18n } from '@/composables/useI18n';
|
||||
import { getNodeIcon, getNodeIconColor, getNodeIconUrl } from '@/utils/nodeTypesUtils';
|
||||
import { useUIStore } from '@/stores/ui.store';
|
||||
import { useActions } from '../composables/useActions';
|
||||
import type { INodeParameters } from 'n8n-workflow';
|
||||
|
||||
export interface Props {
|
||||
rootView: 'trigger' | 'action';
|
||||
|
@ -40,12 +42,21 @@ const rootStore = useRootStore();
|
|||
|
||||
const { mergedNodes, actions, onSubcategorySelected } = useNodeCreatorStore();
|
||||
const { pushViewStack, popViewStack } = useViewStacks();
|
||||
const { setAddedNodeActionParameters } = useActions();
|
||||
|
||||
const { registerKeyHook } = useKeyboardNavigation();
|
||||
|
||||
const activeViewStack = computed(() => useViewStacks().activeViewStack);
|
||||
const globalSearchItemsDiff = computed(() => useViewStacks().globalSearchItemsDiff);
|
||||
|
||||
function getFilteredActions(node: NodeCreateElement) {
|
||||
const nodeActions = actions?.[node.key] || [];
|
||||
if (activeViewStack.value.actionsFilter) {
|
||||
return activeViewStack.value.actionsFilter(nodeActions);
|
||||
}
|
||||
return nodeActions;
|
||||
}
|
||||
|
||||
function selectNodeType(nodeTypes: string[]) {
|
||||
emit('nodeTypeSelected', nodeTypes);
|
||||
}
|
||||
|
@ -87,9 +98,21 @@ function onSelected(item: INodeCreateElement) {
|
|||
}
|
||||
|
||||
if (item.type === 'node') {
|
||||
const nodeActions = actions?.[item.key] || [];
|
||||
const nodeActions = getFilteredActions(item);
|
||||
|
||||
// If there is only one action, use it
|
||||
if (nodeActions.length === 1) {
|
||||
selectNodeType([item.key]);
|
||||
setAddedNodeActionParameters({
|
||||
name: nodeActions[0].defaults.name ?? item.properties.displayName,
|
||||
key: item.key,
|
||||
value: nodeActions[0].values as INodeParameters,
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
// Only show actions if there are more than one or if the view is not an AI subcategory
|
||||
if (nodeActions.length <= 1 || activeViewStack.value.hideActions) {
|
||||
if (nodeActions.length === 0 || activeViewStack.value.hideActions) {
|
||||
selectNodeType([item.key]);
|
||||
return;
|
||||
}
|
||||
|
@ -158,7 +181,7 @@ function subcategoriesMapper(item: INodeCreateElement) {
|
|||
if (item.type !== 'node') return item;
|
||||
|
||||
const hasTriggerGroup = item.properties.group.includes('trigger');
|
||||
const nodeActions = actions?.[item.key] || [];
|
||||
const nodeActions = getFilteredActions(item);
|
||||
const hasActions = nodeActions.length > 0;
|
||||
|
||||
if (hasTriggerGroup && hasActions) {
|
||||
|
@ -179,7 +202,7 @@ function baseSubcategoriesFilter(item: INodeCreateElement): boolean {
|
|||
if (item.type !== 'node') return false;
|
||||
|
||||
const hasTriggerGroup = item.properties.group.includes('trigger');
|
||||
const nodeActions = actions?.[item.key] || [];
|
||||
const nodeActions = getFilteredActions(item);
|
||||
const hasActions = nodeActions.length > 0;
|
||||
|
||||
const isTriggerRootView = activeViewStack.value.rootView === TRIGGER_NODE_CREATOR_VIEW;
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
import type { ActionTypeDescription, ActionsRecord, SimplifiedNodeType } from '@/Interface';
|
||||
import { AI_SUBCATEGORY, CUSTOM_API_CALL_KEY, HTTP_REQUEST_NODE_TYPE } from '@/constants';
|
||||
import {
|
||||
AI_CATEGORY_ROOT_NODES,
|
||||
AI_CATEGORY_TOOLS,
|
||||
AI_SUBCATEGORY,
|
||||
CUSTOM_API_CALL_KEY,
|
||||
HTTP_REQUEST_NODE_TYPE,
|
||||
} from '@/constants';
|
||||
import { memoize, startCase } from 'lodash-es';
|
||||
import type {
|
||||
ICredentialType,
|
||||
|
@ -87,6 +93,7 @@ function operationsCategory(nodeTypeDescription: INodeTypeDescription): ActionTy
|
|||
displayName: item.action ?? startCase(item.name),
|
||||
description: item.description ?? '',
|
||||
displayOptions: matchedProperty.displayOptions,
|
||||
outputConnectionType: item.outputConnectionType,
|
||||
values: {
|
||||
[matchedProperty.name]: matchedProperty.type === 'multiOptions' ? [item.value] : item.value,
|
||||
},
|
||||
|
@ -117,6 +124,7 @@ function modeCategory(nodeTypeDescription: INodeTypeDescription): ActionTypeDesc
|
|||
displayName: item.action ?? startCase(item.name),
|
||||
description: item.description ?? '',
|
||||
displayOptions: matchedProperty.displayOptions,
|
||||
outputConnectionType: item.outputConnectionType,
|
||||
values: {
|
||||
[matchedProperty.name]: item.value,
|
||||
},
|
||||
|
@ -261,7 +269,11 @@ function resourceCategories(nodeTypeDescription: INodeTypeDescription): ActionTy
|
|||
export function useActionsGenerator() {
|
||||
function generateNodeActions(node: INodeTypeDescription | undefined) {
|
||||
if (!node) return [];
|
||||
if (node.codex?.subcategories?.AI?.includes('Tools')) return [];
|
||||
if (
|
||||
node.codex?.subcategories?.AI?.includes(AI_CATEGORY_TOOLS) &&
|
||||
!node.codex?.subcategories?.AI?.includes(AI_CATEGORY_ROOT_NODES)
|
||||
)
|
||||
return [];
|
||||
return [
|
||||
...triggersCategory(node),
|
||||
...operationsCategory(node),
|
||||
|
@ -269,6 +281,7 @@ export function useActionsGenerator() {
|
|||
...modeCategory(node),
|
||||
];
|
||||
}
|
||||
|
||||
function filterActions(actions: ActionTypeDescription[]) {
|
||||
// Do not show single action nodes
|
||||
if (actions.length <= 1) return [];
|
||||
|
@ -320,7 +333,6 @@ export function useActionsGenerator() {
|
|||
const visibleNodeTypes = [...nodeTypes];
|
||||
const actions: ActionsRecord<typeof mergedNodes> = {};
|
||||
const mergedNodes: SimplifiedNodeType[] = [];
|
||||
|
||||
visibleNodeTypes
|
||||
.filter((node) => !node.group.includes('trigger'))
|
||||
.forEach((app) => {
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import type {
|
||||
ActionTypeDescription,
|
||||
INodeCreateElement,
|
||||
NodeCreateElement,
|
||||
NodeFilterType,
|
||||
|
@ -6,6 +7,7 @@ import type {
|
|||
} from '@/Interface';
|
||||
import {
|
||||
AI_CATEGORY_ROOT_NODES,
|
||||
AI_CATEGORY_TOOLS,
|
||||
AI_CODE_NODE_TYPE,
|
||||
AI_NODE_CREATOR_VIEW,
|
||||
AI_OTHERS_NODE_CREATOR_VIEW,
|
||||
|
@ -36,12 +38,8 @@ import { useI18n } from '@/composables/useI18n';
|
|||
import { useKeyboardNavigation } from './useKeyboardNavigation';
|
||||
|
||||
import { useNodeTypesStore } from '@/stores/nodeTypes.store';
|
||||
import {
|
||||
AI_TRANSFORM_NODE_TYPE,
|
||||
type INodeInputFilter,
|
||||
type NodeConnectionType,
|
||||
type Themed,
|
||||
} from 'n8n-workflow';
|
||||
import { AI_TRANSFORM_NODE_TYPE } from 'n8n-workflow';
|
||||
import type { NodeConnectionType, INodeInputFilter, Themed } from 'n8n-workflow';
|
||||
import { useCanvasStore } from '@/stores/canvas.store';
|
||||
import { useSettingsStore } from '@/stores/settings.store';
|
||||
|
||||
|
@ -71,6 +69,7 @@ interface ViewStack {
|
|||
hideActions?: boolean;
|
||||
baseFilter?: (item: INodeCreateElement) => boolean;
|
||||
itemsMapper?: (item: INodeCreateElement) => INodeCreateElement;
|
||||
actionsFilter?: (items: ActionTypeDescription[]) => ActionTypeDescription[];
|
||||
panelClass?: string;
|
||||
sections?: string[] | NodeViewItemSection[];
|
||||
}
|
||||
|
@ -207,8 +206,10 @@ export const useViewStacks = defineStore('nodeCreatorViewStacks', () => {
|
|||
return items.filter((node) => {
|
||||
if (node.type !== 'node') return false;
|
||||
|
||||
return node.properties.codex?.subcategories?.[AI_SUBCATEGORY].includes(
|
||||
AI_CATEGORY_ROOT_NODES,
|
||||
const subcategories = node.properties.codex?.subcategories?.[AI_SUBCATEGORY] ?? [];
|
||||
return (
|
||||
subcategories.includes(AI_CATEGORY_ROOT_NODES) &&
|
||||
!subcategories?.includes(AI_CATEGORY_TOOLS)
|
||||
);
|
||||
});
|
||||
}
|
||||
|
@ -346,6 +347,13 @@ export const useViewStacks = defineStore('nodeCreatorViewStacks', () => {
|
|||
subcategory: connectionType,
|
||||
};
|
||||
},
|
||||
actionsFilter: (items: ActionTypeDescription[]) => {
|
||||
// Filter out actions that are not compatible with the connection type
|
||||
if (items.some((item) => item.outputConnectionType)) {
|
||||
return items.filter((item) => item.outputConnectionType === connectionType);
|
||||
}
|
||||
return items;
|
||||
},
|
||||
hideActions: true,
|
||||
preventBack: true,
|
||||
});
|
||||
|
|
|
@ -8,6 +8,7 @@ import type {
|
|||
} from '@/Interface';
|
||||
import {
|
||||
AI_CATEGORY_AGENTS,
|
||||
AI_CATEGORY_OTHER_TOOLS,
|
||||
AI_SUBCATEGORY,
|
||||
AI_TRANSFORM_NODE_TYPE,
|
||||
CORE_NODES_CATEGORY,
|
||||
|
@ -169,6 +170,7 @@ export function groupItemsInSections(
|
|||
result.sort((a, b) => {
|
||||
if (a.key.toLowerCase().includes('recommended')) return -1;
|
||||
if (b.key.toLowerCase().includes('recommended')) return 1;
|
||||
if (b.key === AI_CATEGORY_OTHER_TOOLS) return -1;
|
||||
|
||||
return 0;
|
||||
});
|
||||
|
|
|
@ -283,6 +283,7 @@ export const AI_CATEGORY_RETRIEVERS = 'Retrievers';
|
|||
export const AI_CATEGORY_EMBEDDING = 'Embeddings';
|
||||
export const AI_CATEGORY_DOCUMENT_LOADERS = 'Document Loaders';
|
||||
export const AI_CATEGORY_TEXT_SPLITTERS = 'Text Splitters';
|
||||
export const AI_CATEGORY_OTHER_TOOLS = 'Other Tools';
|
||||
export const AI_CATEGORY_ROOT_NODES = 'Root Nodes';
|
||||
export const AI_UNCATEGORIZED_CATEGORY = 'Miscellaneous';
|
||||
export const AI_CODE_TOOL_LANGCHAIN_NODE_TYPE = '@n8n/n8n-nodes-langchain.toolCode';
|
||||
|
|
|
@ -1484,6 +1484,7 @@ export interface INodePropertyOptions {
|
|||
action?: string;
|
||||
description?: string;
|
||||
routing?: INodePropertyRouting;
|
||||
outputConnectionType?: NodeConnectionType;
|
||||
}
|
||||
|
||||
export interface INodeListSearchItems extends INodePropertyOptions {
|
||||
|
|
Loading…
Reference in a new issue