import type { BaseLanguageModel } from '@langchain/core/language_models/base'; import { ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, PromptTemplate, } from '@langchain/core/prompts'; import type { BaseRetriever } from '@langchain/core/retrievers'; import { RetrievalQAChain } from 'langchain/chains'; import { NodeConnectionType, type IExecuteFunctions, type INodeExecutionData, type INodeType, type INodeTypeDescription, NodeOperationError, } from 'n8n-workflow'; import { promptTypeOptions, textFromPreviousNode } from '@utils/descriptions'; import { getPromptInputByType, isChatInstance } from '@utils/helpers'; import { getTemplateNoticeField } from '@utils/sharedFields'; import { getTracingConfig } from '@utils/tracing'; const SYSTEM_PROMPT_TEMPLATE = `Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ---------------- {context}`; export class ChainRetrievalQa implements INodeType { description: INodeTypeDescription = { displayName: 'Question and Answer Chain', name: 'chainRetrievalQa', icon: 'fa:link', group: ['transform'], version: [1, 1.1, 1.2, 1.3, 1.4], description: 'Answer questions about retrieved documents', defaults: { name: 'Question and Answer Chain', color: '#909298', }, codex: { alias: ['LangChain'], categories: ['AI'], subcategories: { AI: ['Chains', 'Root Nodes'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [ NodeConnectionType.Main, { displayName: 'Model', maxConnections: 1, type: NodeConnectionType.AiLanguageModel, required: true, }, { displayName: 'Retriever', maxConnections: 1, type: NodeConnectionType.AiRetriever, required: true, }, ], outputs: [NodeConnectionType.Main], credentials: [], properties: [ getTemplateNoticeField(1960), { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.input }}', displayOptions: { show: { '@version': [1], }, }, }, { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.chat_input }}', displayOptions: { show: { '@version': [1.1], }, }, }, { displayName: 'Query', name: 'query', type: 'string', required: true, default: '={{ $json.chatInput }}', displayOptions: { show: { '@version': [1.2], }, }, }, { ...promptTypeOptions, displayOptions: { hide: { '@version': [{ _cnd: { lte: 1.2 } }], }, }, }, { ...textFromPreviousNode, displayOptions: { show: { promptType: ['auto'], '@version': [{ _cnd: { gte: 1.4 } }] } }, }, { displayName: 'Text', name: 'text', type: 'string', required: true, default: '', typeOptions: { rows: 2, }, displayOptions: { show: { promptType: ['define'], }, }, }, { displayName: 'Options', name: 'options', type: 'collection', default: {}, placeholder: 'Add Option', options: [ { displayName: 'System Prompt Template', name: 'systemPromptTemplate', type: 'string', default: SYSTEM_PROMPT_TEMPLATE, description: 'Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the user’s query.', typeOptions: { rows: 6, }, }, ], }, ], }; async execute(this: IExecuteFunctions): Promise { this.logger.debug('Executing Retrieval QA Chain'); const model = (await this.getInputConnectionData( NodeConnectionType.AiLanguageModel, 0, )) as BaseLanguageModel; const retriever = (await this.getInputConnectionData( NodeConnectionType.AiRetriever, 0, )) as BaseRetriever; const items = this.getInputData(); const returnData: INodeExecutionData[] = []; // Run for each item for (let itemIndex = 0; itemIndex < items.length; itemIndex++) { try { let query; if (this.getNode().typeVersion <= 1.2) { query = this.getNodeParameter('query', itemIndex) as string; } else { query = getPromptInputByType({ ctx: this, i: itemIndex, inputKey: 'text', promptTypeKey: 'promptType', }); } if (query === undefined) { throw new NodeOperationError(this.getNode(), 'The ‘query‘ parameter is empty.'); } const options = this.getNodeParameter('options', itemIndex, {}) as { systemPromptTemplate?: string; }; const chainParameters = {} as { prompt?: PromptTemplate | ChatPromptTemplate; }; if (options.systemPromptTemplate !== undefined) { if (isChatInstance(model)) { const messages = [ SystemMessagePromptTemplate.fromTemplate(options.systemPromptTemplate), HumanMessagePromptTemplate.fromTemplate('{question}'), ]; const chatPromptTemplate = ChatPromptTemplate.fromMessages(messages); chainParameters.prompt = chatPromptTemplate; } else { const completionPromptTemplate = new PromptTemplate({ template: options.systemPromptTemplate, inputVariables: ['context', 'question'], }); chainParameters.prompt = completionPromptTemplate; } } const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters); const response = await chain.withConfig(getTracingConfig(this)).invoke({ query }); returnData.push({ json: { response } }); } catch (error) { if (this.continueOnFail()) { returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } }); continue; } throw error; } } return [returnData]; } }