import type { BaseLanguageModel } from '@langchain/core/language_models/base'; import { HumanMessage } from '@langchain/core/messages'; import { SystemMessagePromptTemplate, ChatPromptTemplate } from '@langchain/core/prompts'; import { OutputFixingParser, StructuredOutputParser } from 'langchain/output_parsers'; import { NodeConnectionType, NodeOperationError } from 'n8n-workflow'; import type { IDataObject, IExecuteFunctions, INodeExecutionData, INodeParameters, INodeType, INodeTypeDescription, } from 'n8n-workflow'; import { z } from 'zod'; import { getTracingConfig } from '@utils/tracing'; const DEFAULT_SYSTEM_PROMPT_TEMPLATE = 'You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.'; const DEFAULT_CATEGORIES = 'Positive, Neutral, Negative'; const configuredOutputs = (parameters: INodeParameters, defaultCategories: string) => { const options = (parameters?.options ?? {}) as IDataObject; const categories = (options?.categories as string) ?? defaultCategories; const categoriesArray = categories.split(',').map((cat) => cat.trim()); const ret = categoriesArray.map((cat) => ({ type: NodeConnectionType.Main, displayName: cat })); return ret; }; export class SentimentAnalysis implements INodeType { description: INodeTypeDescription = { displayName: 'Sentiment Analysis', name: 'sentimentAnalysis', icon: 'fa:balance-scale-left', iconColor: 'black', group: ['transform'], version: 1, description: 'Analyze the sentiment of your text', codex: { categories: ['AI'], subcategories: { AI: ['Chains', 'Root Nodes'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/', }, ], }, }, defaults: { name: 'Sentiment Analysis', }, inputs: [ { displayName: '', type: NodeConnectionType.Main }, { displayName: 'Model', maxConnections: 1, type: NodeConnectionType.AiLanguageModel, required: true, }, ], outputs: `={{(${configuredOutputs})($parameter, "${DEFAULT_CATEGORIES}")}}`, properties: [ { displayName: 'Text to Analyze', name: 'inputText', type: 'string', required: true, default: '', description: 'Use an expression to reference data in previous nodes or enter static text', typeOptions: { rows: 2, }, }, { displayName: 'Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.', name: 'detailedResultsNotice', type: 'notice', default: '', displayOptions: { show: { '/options.includeDetailedResults': [true], }, }, }, { displayName: 'Options', name: 'options', type: 'collection', default: {}, placeholder: 'Add Option', options: [ { displayName: 'Sentiment Categories', name: 'categories', type: 'string', default: DEFAULT_CATEGORIES, description: 'A comma-separated list of categories to analyze', noDataExpression: true, typeOptions: { rows: 2, }, }, { displayName: 'System Prompt Template', name: 'systemPromptTemplate', type: 'string', default: DEFAULT_SYSTEM_PROMPT_TEMPLATE, description: 'String to use directly as the system prompt template', typeOptions: { rows: 6, }, }, { displayName: 'Include Detailed Results', name: 'includeDetailedResults', type: 'boolean', default: false, description: 'Whether to include sentiment strength and confidence scores in the output', }, { displayName: 'Enable Auto-Fixing', name: 'enableAutoFixing', type: 'boolean', default: true, description: 'Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)', }, ], }, ], }; async execute(this: IExecuteFunctions): Promise { const items = this.getInputData(); const llm = (await this.getInputConnectionData( NodeConnectionType.AiLanguageModel, 0, )) as BaseLanguageModel; const returnData: INodeExecutionData[][] = []; for (let i = 0; i < items.length; i++) { try { const sentimentCategories = this.getNodeParameter( 'options.categories', i, DEFAULT_CATEGORIES, ) as string; const categories = sentimentCategories .split(',') .map((cat) => cat.trim()) .filter(Boolean); if (categories.length === 0) { throw new NodeOperationError(this.getNode(), 'No sentiment categories provided', { itemIndex: i, }); } // Initialize returnData with empty arrays for each category if (returnData.length === 0) { returnData.push(...Array.from({ length: categories.length }, () => [])); } const options = this.getNodeParameter('options', i, {}) as { systemPromptTemplate?: string; includeDetailedResults?: boolean; enableAutoFixing?: boolean; }; const schema = z.object({ sentiment: z.enum(categories as [string, ...string[]]), strength: z .number() .min(0) .max(1) .describe('Strength score for sentiment in relation to the category'), confidence: z.number().min(0).max(1), }); const structuredParser = StructuredOutputParser.fromZodSchema(schema); const parser = options.enableAutoFixing ? OutputFixingParser.fromLLM(llm, structuredParser) : structuredParser; const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate( `${options.systemPromptTemplate ?? DEFAULT_SYSTEM_PROMPT_TEMPLATE} {format_instructions}`, ); const input = this.getNodeParameter('inputText', i) as string; const inputPrompt = new HumanMessage(input); const messages = [ await systemPromptTemplate.format({ categories: sentimentCategories, format_instructions: parser.getFormatInstructions(), }), inputPrompt, ]; const prompt = ChatPromptTemplate.fromMessages(messages); const chain = prompt.pipe(llm).pipe(parser).withConfig(getTracingConfig(this)); try { const output = await chain.invoke(messages); const sentimentIndex = categories.findIndex( (s) => s.toLowerCase() === output.sentiment.toLowerCase(), ); if (sentimentIndex !== -1) { const resultItem = { ...items[i] }; const sentimentAnalysis: IDataObject = { category: output.sentiment, }; if (options.includeDetailedResults) { sentimentAnalysis.strength = output.strength; sentimentAnalysis.confidence = output.confidence; } resultItem.json = { ...resultItem.json, sentimentAnalysis, }; returnData[sentimentIndex].push(resultItem); } } catch (error) { throw new NodeOperationError( this.getNode(), 'Error during parsing of LLM output, please check your LLM model and configuration', { itemIndex: i, }, ); } } catch (error) { if (this.continueOnFail()) { const executionErrorData = this.helpers.constructExecutionMetaData( this.helpers.returnJsonArray({ error: error.message }), { itemData: { item: i } }, ); returnData[0].push(...executionErrorData); continue; } throw error; } } return returnData; } }