/* eslint-disable n8n-nodes-base/node-dirname-against-convention */ import { NodeConnectionType, type IExecuteFunctions, type INodeType, type INodeTypeDescription, type SupplyData, } from 'n8n-workflow'; import { ContextualCompressionRetriever } from 'langchain/retrievers/contextual_compression'; import { LLMChainExtractor } from 'langchain/retrievers/document_compressors/chain_extract'; import type { BaseLanguageModel } from 'langchain/base_language'; import type { BaseRetriever } from 'langchain/schema/retriever'; import { logWrapper } from '../../../utils/logWrapper'; export class RetrieverContextualCompression implements INodeType { description: INodeTypeDescription = { displayName: 'Contextual Compression Retriever', name: 'retrieverContextualCompression', icon: 'fa:box-open', group: ['transform'], version: 1, description: 'Enhances document similarity search by contextual compression.', defaults: { name: 'Contextual Compression Retriever', }, codex: { categories: ['AI'], subcategories: { AI: ['Retrievers'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.retrievercontextualcompression/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [ { displayName: 'Model', maxConnections: 1, type: NodeConnectionType.AiLanguageModel, required: true, }, { displayName: 'Retriever', maxConnections: 1, type: NodeConnectionType.AiRetriever, required: true, }, ], outputs: [ { displayName: 'Retriever', maxConnections: 1, type: NodeConnectionType.AiRetriever, }, ], properties: [], }; async supplyData(this: IExecuteFunctions, itemIndex: number): Promise { this.logger.verbose('Supplying data for Contextual Compression Retriever'); const model = (await this.getInputConnectionData( NodeConnectionType.AiLanguageModel, itemIndex, )) as BaseLanguageModel; const baseRetriever = (await this.getInputConnectionData( NodeConnectionType.AiRetriever, itemIndex, )) as BaseRetriever; const baseCompressor = LLMChainExtractor.fromLLM(model); const retriever = new ContextualCompressionRetriever({ baseCompressor, baseRetriever, }); return { response: logWrapper(retriever, this), }; } }