import type { BaseChatMemory } from '@langchain/community/memory/chat_memory'; import type { BaseCallbackConfig, Callbacks } from '@langchain/core/callbacks/manager'; import type { BaseChatMessageHistory } from '@langchain/core/chat_history'; import type { Document } from '@langchain/core/documents'; import { Embeddings } from '@langchain/core/embeddings'; import type { InputValues, MemoryVariables, OutputValues } from '@langchain/core/memory'; import type { BaseMessage } from '@langchain/core/messages'; import { BaseRetriever } from '@langchain/core/retrievers'; import type { Tool } from '@langchain/core/tools'; import { VectorStore } from '@langchain/core/vectorstores'; import { TextSplitter } from '@langchain/textsplitters'; import type { BaseDocumentLoader } from 'langchain/dist/document_loaders/base'; import type { IExecuteFunctions, INodeExecutionData, ISupplyDataFunctions, ITaskMetadata, } from 'n8n-workflow'; import { NodeOperationError, NodeConnectionType } from 'n8n-workflow'; import { logAiEvent, isToolsInstance, isBaseChatMemory, isBaseChatMessageHistory } from './helpers'; import { N8nBinaryLoader } from './N8nBinaryLoader'; import { N8nJsonLoader } from './N8nJsonLoader'; export async function callMethodAsync( this: T, parameters: { executeFunctions: IExecuteFunctions | ISupplyDataFunctions; connectionType: NodeConnectionType; currentNodeRunIndex: number; method: (...args: any[]) => Promise; arguments: unknown[]; }, ): Promise { try { return await parameters.method.call(this, ...parameters.arguments); } catch (e) { const connectedNode = parameters.executeFunctions.getNode(); const error = new NodeOperationError(connectedNode, e, { functionality: 'configuration-node', }); parameters.executeFunctions.addOutputData( parameters.connectionType, parameters.currentNodeRunIndex, error, ); if (error.message) { if (!error.description) { error.description = error.message; } throw error; } throw new NodeOperationError( connectedNode, `Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`, { functionality: 'configuration-node' }, ); } } export function callMethodSync( this: T, parameters: { executeFunctions: IExecuteFunctions; connectionType: NodeConnectionType; currentNodeRunIndex: number; method: (...args: any[]) => T; arguments: unknown[]; }, ): unknown { try { return parameters.method.call(this, ...parameters.arguments); } catch (e) { const connectedNode = parameters.executeFunctions.getNode(); const error = new NodeOperationError(connectedNode, e); parameters.executeFunctions.addOutputData( parameters.connectionType, parameters.currentNodeRunIndex, error, ); throw new NodeOperationError( connectedNode, `Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`, { functionality: 'configuration-node' }, ); } } export function logWrapper( originalInstance: | Tool | BaseChatMemory | BaseChatMessageHistory | BaseRetriever | Embeddings | Document[] | Document | BaseDocumentLoader | TextSplitter | VectorStore | N8nBinaryLoader | N8nJsonLoader, executeFunctions: IExecuteFunctions | ISupplyDataFunctions, ) { return new Proxy(originalInstance, { get: (target, prop) => { let connectionType: NodeConnectionType | undefined; // ========== BaseChatMemory ========== if (isBaseChatMemory(originalInstance)) { if (prop === 'loadMemoryVariables' && 'loadMemoryVariables' in target) { return async (values: InputValues): Promise => { connectionType = NodeConnectionType.AiMemory; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { action: 'loadMemoryVariables', values } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [values], })) as MemoryVariables; const chatHistory = (response?.chat_history as BaseMessage[]) ?? response; executeFunctions.addOutputData(connectionType, index, [ [{ json: { action: 'loadMemoryVariables', chatHistory } }], ]); return response; }; } else if (prop === 'saveContext' && 'saveContext' in target) { return async (input: InputValues, output: OutputValues): Promise => { connectionType = NodeConnectionType.AiMemory; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { action: 'saveContext', input, output } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [input, output], })) as MemoryVariables; const chatHistory = await target.chatHistory.getMessages(); executeFunctions.addOutputData(connectionType, index, [ [{ json: { action: 'saveContext', chatHistory } }], ]); return response; }; } } // ========== BaseChatMessageHistory ========== if (isBaseChatMessageHistory(originalInstance)) { if (prop === 'getMessages' && 'getMessages' in target) { return async (): Promise => { connectionType = NodeConnectionType.AiMemory; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { action: 'getMessages' } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [], })) as BaseMessage[]; const payload = { action: 'getMessages', response }; executeFunctions.addOutputData(connectionType, index, [[{ json: payload }]]); logAiEvent(executeFunctions, 'ai-messages-retrieved-from-memory', { response }); return response; }; } else if (prop === 'addMessage' && 'addMessage' in target) { return async (message: BaseMessage): Promise => { connectionType = NodeConnectionType.AiMemory; const payload = { action: 'addMessage', message }; const { index } = executeFunctions.addInputData(connectionType, [[{ json: payload }]]); await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [message], }); logAiEvent(executeFunctions, 'ai-message-added-to-memory', { message }); executeFunctions.addOutputData(connectionType, index, [[{ json: payload }]]); }; } } // ========== BaseRetriever ========== if (originalInstance instanceof BaseRetriever) { if (prop === 'getRelevantDocuments' && 'getRelevantDocuments' in target) { return async ( query: string, config?: Callbacks | BaseCallbackConfig, ): Promise => { connectionType = NodeConnectionType.AiRetriever; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { query, config } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [query, config], })) as Array>>; const executionId: string | undefined = response[0]?.metadata?.executionId as string; const workflowId: string | undefined = response[0]?.metadata?.workflowId as string; const metadata: ITaskMetadata = {}; if (executionId && workflowId) { metadata.subExecution = { executionId, workflowId, }; } logAiEvent(executeFunctions, 'ai-documents-retrieved', { query }); executeFunctions.addOutputData( connectionType, index, [[{ json: { response } }]], metadata, ); return response; }; } } // ========== Embeddings ========== if (originalInstance instanceof Embeddings) { // Docs -> Embeddings if (prop === 'embedDocuments' && 'embedDocuments' in target) { return async (documents: string[]): Promise => { connectionType = NodeConnectionType.AiEmbedding; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { documents } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [documents], })) as number[][]; logAiEvent(executeFunctions, 'ai-document-embedded'); executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } // Query -> Embeddings if (prop === 'embedQuery' && 'embedQuery' in target) { return async (query: string): Promise => { connectionType = NodeConnectionType.AiEmbedding; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { query } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [query], })) as number[]; logAiEvent(executeFunctions, 'ai-query-embedded'); executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } } // ========== N8n Loaders Process All ========== if ( originalInstance instanceof N8nJsonLoader || originalInstance instanceof N8nBinaryLoader ) { // Process All if (prop === 'processAll' && 'processAll' in target) { return async (items: INodeExecutionData[]): Promise => { connectionType = NodeConnectionType.AiDocument; const { index } = executeFunctions.addInputData(connectionType, [items]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [items], })) as number[]; executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } // Process Each if (prop === 'processItem' && 'processItem' in target) { return async (item: INodeExecutionData, itemIndex: number): Promise => { connectionType = NodeConnectionType.AiDocument; const { index } = executeFunctions.addInputData(connectionType, [[item]]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [item, itemIndex], })) as number[]; logAiEvent(executeFunctions, 'ai-document-processed'); executeFunctions.addOutputData(connectionType, index, [ [{ json: { response }, pairedItem: { item: itemIndex } }], ]); return response; }; } } // ========== TextSplitter ========== if (originalInstance instanceof TextSplitter) { if (prop === 'splitText' && 'splitText' in target) { return async (text: string): Promise => { connectionType = NodeConnectionType.AiTextSplitter; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { textSplitter: text } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [text], })) as string[]; logAiEvent(executeFunctions, 'ai-text-split'); executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } } // ========== Tool ========== if (isToolsInstance(originalInstance)) { if (prop === '_call' && '_call' in target) { return async (query: string): Promise => { connectionType = NodeConnectionType.AiTool; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { query } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [query], })) as string; logAiEvent(executeFunctions, 'ai-tool-called', { query, response }); executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } } // ========== VectorStore ========== if (originalInstance instanceof VectorStore) { if (prop === 'similaritySearch' && 'similaritySearch' in target) { return async ( query: string, k?: number, // @ts-ignore filter?: BiquadFilterType | undefined, _callbacks?: Callbacks | undefined, ): Promise => { connectionType = NodeConnectionType.AiVectorStore; const { index } = executeFunctions.addInputData(connectionType, [ [{ json: { query, k, filter } }], ]); const response = (await callMethodAsync.call(target, { executeFunctions, connectionType, currentNodeRunIndex: index, method: target[prop], arguments: [query, k, filter, _callbacks], })) as Array>>; logAiEvent(executeFunctions, 'ai-vector-store-searched', { query }); executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]); return response; }; } } // eslint-disable-next-line @typescript-eslint/no-unsafe-return return (target as any)[prop]; }, }); }