import { BaseCallbackHandler } from '@langchain/core/callbacks/base'; import { getModelNameForTiktoken } from '@langchain/core/language_models/base'; import { encodingForModel } from '@langchain/core/utils/tiktoken'; import type { Serialized, SerializedNotImplemented, SerializedSecret, } from '@langchain/core/load/serializable'; import type { LLMResult } from '@langchain/core/outputs'; import type { IDataObject, ISupplyDataFunctions } from 'n8n-workflow'; import { NodeConnectionType } from 'n8n-workflow'; import { pick } from 'lodash'; import type { BaseMessage } from '@langchain/core/messages'; import type { SerializedFields } from '@langchain/core/dist/load/map_keys'; import { logAiEvent } from '../../utils/helpers'; type TokensUsageParser = (llmOutput: LLMResult['llmOutput']) => { completionTokens: number; promptTokens: number; totalTokens: number; }; type RunDetail = { index: number; messages: BaseMessage[] | string[] | string; options: SerializedSecret | SerializedNotImplemented | SerializedFields; }; const TIKTOKEN_ESTIMATE_MODEL = 'gpt-4o'; export class N8nLlmTracing extends BaseCallbackHandler { name = 'N8nLlmTracing'; connectionType = NodeConnectionType.AiLanguageModel; promptTokensEstimate = 0; completionTokensEstimate = 0; /** * A map to associate LLM run IDs to run details. * Key: Unique identifier for each LLM run (run ID) * Value: RunDetails object * */ runsMap: Record = {}; options = { // Default(OpenAI format) parser tokensUsageParser: (llmOutput: LLMResult['llmOutput']) => { const completionTokens = (llmOutput?.tokenUsage?.completionTokens as number) ?? 0; const promptTokens = (llmOutput?.tokenUsage?.promptTokens as number) ?? 0; return { completionTokens, promptTokens, totalTokens: completionTokens + promptTokens, }; }, }; constructor( private executionFunctions: ISupplyDataFunctions, options?: { tokensUsageParser: TokensUsageParser }, ) { super(); this.options = { ...this.options, ...options }; } async estimateTokensFromGeneration(generations: LLMResult['generations']) { const messages = generations.flatMap((gen) => gen.map((g) => g.text)); return await this.estimateTokensFromStringList(messages); } async estimateTokensFromStringList(list: string[]) { const embeddingModel = getModelNameForTiktoken(TIKTOKEN_ESTIMATE_MODEL); const encoder = await encodingForModel(embeddingModel); const encodedListLength = await Promise.all( list.map(async (text) => encoder.encode(text).length), ); return encodedListLength.reduce((acc, curr) => acc + curr, 0); } async handleLLMEnd(output: LLMResult, runId: string) { // The fallback should never happen since handleLLMStart should always set the run details // but just in case, we set the index to the length of the runsMap const runDetails = this.runsMap[runId] ?? { index: Object.keys(this.runsMap).length }; output.generations = output.generations.map((gen) => gen.map((g) => pick(g, ['text', 'generationInfo'])), ); const tokenUsageEstimate = { completionTokens: 0, promptTokens: 0, totalTokens: 0, }; const tokenUsage = this.options.tokensUsageParser(output.llmOutput); if (output.generations.length > 0) { tokenUsageEstimate.completionTokens = await this.estimateTokensFromGeneration( output.generations, ); tokenUsageEstimate.promptTokens = this.promptTokensEstimate; tokenUsageEstimate.totalTokens = tokenUsageEstimate.completionTokens + this.promptTokensEstimate; } const response: { response: { generations: LLMResult['generations'] }; tokenUsageEstimate?: typeof tokenUsageEstimate; tokenUsage?: typeof tokenUsage; } = { response: { generations: output.generations }, }; // If the LLM response contains actual tokens usage, otherwise fallback to the estimate if (tokenUsage.completionTokens > 0) { response.tokenUsage = tokenUsage; } else { response.tokenUsageEstimate = tokenUsageEstimate; } const parsedMessages = typeof runDetails.messages === 'string' ? runDetails.messages : runDetails.messages.map((message) => { if (typeof message === 'string') return message; if (typeof message?.toJSON === 'function') return message.toJSON(); return message; }); this.executionFunctions.addOutputData(this.connectionType, runDetails.index, [ [{ json: { ...response } }], ]); logAiEvent(this.executionFunctions, 'ai-llm-generated-output', { messages: parsedMessages, options: runDetails.options, response, }); } async handleLLMStart(llm: Serialized, prompts: string[], runId: string) { const estimatedTokens = await this.estimateTokensFromStringList(prompts); const options = llm.type === 'constructor' ? llm.kwargs : llm; const { index } = this.executionFunctions.addInputData(this.connectionType, [ [ { json: { messages: prompts, estimatedTokens, options, }, }, ], ]); // Save the run details for later use when processing `handleLLMEnd` event this.runsMap[runId] = { index, options, messages: prompts, }; this.promptTokensEstimate = estimatedTokens; } async handleLLMError( error: IDataObject | Error, runId: string, parentRunId?: string | undefined, ) { // Filter out non-x- headers to avoid leaking sensitive information in logs if (typeof error === 'object' && error?.hasOwnProperty('headers')) { const errorWithHeaders = error as { headers: Record }; Object.keys(errorWithHeaders.headers).forEach((key) => { if (!key.startsWith('x-')) { delete errorWithHeaders.headers[key]; } }); } logAiEvent(this.executionFunctions, 'ai-llm-errored', { error: Object.keys(error).length === 0 ? error.toString() : error, runId, parentRunId, }); } }