/* eslint-disable n8n-nodes-base/node-dirname-against-convention */ import { NodeConnectionType, type IExecuteFunctions, type INodeType, type INodeTypeDescription, type SupplyData, } from 'n8n-workflow'; import { GoogleGenerativeAIEmbeddings } from '@langchain/google-genai'; import { logWrapper } from '../../../utils/logWrapper'; import { getConnectionHintNoticeField } from '../../../utils/sharedFields'; export class EmbeddingsGoogleGemini implements INodeType { description: INodeTypeDescription = { displayName: 'Embeddings Google Gemini', name: 'embeddingsGoogleGemini', icon: 'file:google.svg', group: ['transform'], version: 1, description: 'Use Google Gemini Embeddings', defaults: { name: 'Embeddings Google Gemini', }, requestDefaults: { ignoreHttpStatusErrors: true, baseURL: '={{ $credentials.host }}', }, credentials: [ { name: 'googlePalmApi', required: true, }, ], codex: { categories: ['AI'], subcategories: { AI: ['Embeddings'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsgooglegemini/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [], // eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong outputs: [NodeConnectionType.AiEmbedding], outputNames: ['Embeddings'], properties: [ getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]), { displayName: 'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.', name: 'notice', type: 'notice', default: '', }, { displayName: 'Model', name: 'modelName', type: 'options', description: 'The model which will generate the embeddings. Learn more.', typeOptions: { loadOptions: { routing: { request: { method: 'GET', url: '/v1beta/models', }, output: { postReceive: [ { type: 'rootProperty', properties: { property: 'models', }, }, { type: 'filter', properties: { pass: "={{ $responseItem.name.includes('embedding') }}", }, }, { type: 'setKeyValue', properties: { name: '={{$responseItem.name}}', value: '={{$responseItem.name}}', description: '={{$responseItem.description}}', }, }, { type: 'sort', properties: { key: 'name', }, }, ], }, }, }, }, routing: { send: { type: 'body', property: 'model', }, }, default: 'textembedding-gecko-multilingual@latest', }, ], }; async supplyData(this: IExecuteFunctions, itemIndex: number): Promise { this.logger.verbose('Supply data for embeddings Google Gemini'); const modelName = this.getNodeParameter( 'modelName', itemIndex, 'textembedding-gecko-multilingual@latest', ) as string; const credentials = await this.getCredentials('googlePalmApi'); const embeddings = new GoogleGenerativeAIEmbeddings({ apiKey: credentials.apiKey as string, modelName, }); return { response: logWrapper(embeddings, this), }; } }