/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeType,
type INodeTypeDescription,
type SupplyData,
} from 'n8n-workflow';
import { GoogleGenerativeAIEmbeddings } from '@langchain/google-genai';
import { logWrapper } from '../../../utils/logWrapper';
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
export class EmbeddingsGoogleGemini implements INodeType {
description: INodeTypeDescription = {
displayName: 'Embeddings Google Gemini',
name: 'embeddingsGoogleGemini',
icon: 'file:google.svg',
group: ['transform'],
version: 1,
description: 'Use Google Gemini Embeddings',
defaults: {
name: 'Embeddings Google Gemini',
},
requestDefaults: {
ignoreHttpStatusErrors: true,
baseURL: '={{ $credentials.host }}',
},
credentials: [
{
name: 'googlePalmApi',
required: true,
},
],
codex: {
categories: ['AI'],
subcategories: {
AI: ['Embeddings'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsgooglegemini/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [],
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs: [NodeConnectionType.AiEmbedding],
outputNames: ['Embeddings'],
properties: [
getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]),
{
displayName:
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.',
name: 'notice',
type: 'notice',
default: '',
},
{
displayName: 'Model',
name: 'modelName',
type: 'options',
description:
'The model which will generate the embeddings. Learn more.',
typeOptions: {
loadOptions: {
routing: {
request: {
method: 'GET',
url: '/v1beta/models',
},
output: {
postReceive: [
{
type: 'rootProperty',
properties: {
property: 'models',
},
},
{
type: 'filter',
properties: {
pass: "={{ $responseItem.name.includes('embedding') }}",
},
},
{
type: 'setKeyValue',
properties: {
name: '={{$responseItem.name}}',
value: '={{$responseItem.name}}',
description: '={{$responseItem.description}}',
},
},
{
type: 'sort',
properties: {
key: 'name',
},
},
],
},
},
},
},
routing: {
send: {
type: 'body',
property: 'model',
},
},
default: 'textembedding-gecko-multilingual@latest',
},
],
};
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise {
this.logger.verbose('Supply data for embeddings Google Gemini');
const modelName = this.getNodeParameter(
'modelName',
itemIndex,
'textembedding-gecko-multilingual@latest',
) as string;
const credentials = await this.getCredentials('googlePalmApi');
const embeddings = new GoogleGenerativeAIEmbeddings({
apiKey: credentials.apiKey as string,
modelName,
});
return {
response: logWrapper(embeddings, this),
};
}
}