/* eslint-disable n8n-nodes-base/node-dirname-against-convention */ import { NodeConnectionType, type IExecuteFunctions, type INodeType, type INodeTypeDescription, type SupplyData, } from 'n8n-workflow'; import { HuggingFaceInferenceEmbeddings } from '@langchain/community/embeddings/hf'; import { logWrapper } from '../../../utils/logWrapper'; import { getConnectionHintNoticeField } from '../../../utils/sharedFields'; export class EmbeddingsHuggingFaceInference implements INodeType { description: INodeTypeDescription = { displayName: 'Embeddings Hugging Face Inference', name: 'embeddingsHuggingFaceInference', icon: 'file:huggingface.svg', group: ['transform'], version: 1, description: 'Use HuggingFace Inference Embeddings', defaults: { name: 'Embeddings HuggingFace Inference', }, credentials: [ { name: 'huggingFaceApi', required: true, }, ], codex: { categories: ['AI'], subcategories: { AI: ['Embeddings'], }, resources: { primaryDocumentation: [ { url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingshuggingfaceinference/', }, ], }, }, // eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node inputs: [], // eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong outputs: [NodeConnectionType.AiEmbedding], outputNames: ['Embeddings'], properties: [ getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]), { displayName: 'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.', name: 'notice', type: 'notice', default: '', }, { displayName: 'Model Name', name: 'modelName', type: 'string', default: 'sentence-transformers/distilbert-base-nli-mean-tokens', description: 'The model name to use from HuggingFace library', }, { displayName: 'Options', name: 'options', placeholder: 'Add Option', description: 'Additional options to add', type: 'collection', default: {}, options: [ { displayName: 'Custom Inference Endpoint', name: 'endpointUrl', default: '', description: 'Custom endpoint URL', type: 'string', }, ], }, ], }; async supplyData(this: IExecuteFunctions, itemIndex: number): Promise { this.logger.verbose('Supply data for embeddings HF Inference'); const model = this.getNodeParameter( 'modelName', itemIndex, 'sentence-transformers/distilbert-base-nli-mean-tokens', ) as string; const credentials = await this.getCredentials('huggingFaceApi'); const options = this.getNodeParameter('options', itemIndex, {}) as object; const embeddings = new HuggingFaceInferenceEmbeddings({ apiKey: credentials.apiKey as string, model, ...options, }); return { response: logWrapper(embeddings, this), }; } }