mirror of
https://github.com/n8n-io/n8n.git
synced 2024-12-26 21:19:43 -08:00
f1215cdb6b
Signed-off-by: Oleg Ivaniv <me@olegivaniv.com> Co-authored-by: Michael Kret <michael.k@radency.com>
137 lines
3.6 KiB
TypeScript
137 lines
3.6 KiB
TypeScript
/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
|
|
import {
|
|
NodeConnectionType,
|
|
type IExecuteFunctions,
|
|
type INodeType,
|
|
type INodeTypeDescription,
|
|
type SupplyData,
|
|
} from 'n8n-workflow';
|
|
import { GoogleGenerativeAIEmbeddings } from '@langchain/google-genai';
|
|
|
|
import { logWrapper } from '../../../utils/logWrapper';
|
|
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
|
|
|
|
export class EmbeddingsGoogleGemini implements INodeType {
|
|
description: INodeTypeDescription = {
|
|
displayName: 'Embeddings Google Gemini',
|
|
name: 'embeddingsGoogleGemini',
|
|
icon: 'file:google.svg',
|
|
group: ['transform'],
|
|
version: 1,
|
|
description: 'Use Google Gemini Embeddings',
|
|
defaults: {
|
|
name: 'Embeddings Google Gemini',
|
|
},
|
|
requestDefaults: {
|
|
ignoreHttpStatusErrors: true,
|
|
baseURL: '={{ $credentials.host }}',
|
|
},
|
|
credentials: [
|
|
{
|
|
name: 'googlePalmApi',
|
|
required: true,
|
|
},
|
|
],
|
|
codex: {
|
|
categories: ['AI'],
|
|
subcategories: {
|
|
AI: ['Embeddings'],
|
|
},
|
|
resources: {
|
|
primaryDocumentation: [
|
|
{
|
|
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingsgooglegemini/',
|
|
},
|
|
],
|
|
},
|
|
},
|
|
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
|
|
inputs: [],
|
|
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
|
|
outputs: [NodeConnectionType.AiEmbedding],
|
|
outputNames: ['Embeddings'],
|
|
properties: [
|
|
getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]),
|
|
{
|
|
displayName:
|
|
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.',
|
|
name: 'notice',
|
|
type: 'notice',
|
|
default: '',
|
|
},
|
|
{
|
|
displayName: 'Model',
|
|
name: 'modelName',
|
|
type: 'options',
|
|
description:
|
|
'The model which will generate the embeddings. <a href="https://developers.generativeai.google/api/rest/generativelanguage/models/list">Learn more</a>.',
|
|
typeOptions: {
|
|
loadOptions: {
|
|
routing: {
|
|
request: {
|
|
method: 'GET',
|
|
url: '/v1beta/models',
|
|
},
|
|
output: {
|
|
postReceive: [
|
|
{
|
|
type: 'rootProperty',
|
|
properties: {
|
|
property: 'models',
|
|
},
|
|
},
|
|
{
|
|
type: 'filter',
|
|
properties: {
|
|
pass: "={{ $responseItem.name.includes('embedding') }}",
|
|
},
|
|
},
|
|
{
|
|
type: 'setKeyValue',
|
|
properties: {
|
|
name: '={{$responseItem.name}}',
|
|
value: '={{$responseItem.name}}',
|
|
description: '={{$responseItem.description}}',
|
|
},
|
|
},
|
|
{
|
|
type: 'sort',
|
|
properties: {
|
|
key: 'name',
|
|
},
|
|
},
|
|
],
|
|
},
|
|
},
|
|
},
|
|
},
|
|
routing: {
|
|
send: {
|
|
type: 'body',
|
|
property: 'model',
|
|
},
|
|
},
|
|
default: 'textembedding-gecko-multilingual@latest',
|
|
},
|
|
],
|
|
};
|
|
|
|
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise<SupplyData> {
|
|
this.logger.verbose('Supply data for embeddings Google Gemini');
|
|
const modelName = this.getNodeParameter(
|
|
'modelName',
|
|
itemIndex,
|
|
'textembedding-gecko-multilingual@latest',
|
|
) as string;
|
|
const credentials = await this.getCredentials('googlePalmApi');
|
|
const embeddings = new GoogleGenerativeAIEmbeddings({
|
|
apiKey: credentials.apiKey as string,
|
|
modelName,
|
|
});
|
|
|
|
return {
|
|
response: logWrapper(embeddings, this),
|
|
};
|
|
}
|
|
}
|