mirror of
https://github.com/n8n-io/n8n.git
synced 2025-01-05 18:07:27 -08:00
254 lines
6.4 KiB
TypeScript
254 lines
6.4 KiB
TypeScript
import {
|
||
NodeConnectionType,
|
||
type IExecuteFunctions,
|
||
type INodeExecutionData,
|
||
type INodeType,
|
||
type INodeTypeDescription,
|
||
NodeOperationError,
|
||
} from 'n8n-workflow';
|
||
|
||
import { RetrievalQAChain } from 'langchain/chains';
|
||
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
||
import type { BaseRetriever } from '@langchain/core/retrievers';
|
||
import {
|
||
ChatPromptTemplate,
|
||
SystemMessagePromptTemplate,
|
||
HumanMessagePromptTemplate,
|
||
PromptTemplate,
|
||
} from '@langchain/core/prompts';
|
||
import { getTemplateNoticeField } from '../../../utils/sharedFields';
|
||
import { getPromptInputByType, isChatInstance } from '../../../utils/helpers';
|
||
import { getTracingConfig } from '../../../utils/tracing';
|
||
|
||
const SYSTEM_PROMPT_TEMPLATE = `Use the following pieces of context to answer the users question.
|
||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||
----------------
|
||
{context}`;
|
||
|
||
export class ChainRetrievalQa implements INodeType {
|
||
description: INodeTypeDescription = {
|
||
displayName: 'Question and Answer Chain',
|
||
name: 'chainRetrievalQa',
|
||
icon: 'fa:link',
|
||
group: ['transform'],
|
||
version: [1, 1.1, 1.2, 1.3],
|
||
description: 'Answer questions about retrieved documents',
|
||
defaults: {
|
||
name: 'Question and Answer Chain',
|
||
color: '#909298',
|
||
},
|
||
codex: {
|
||
alias: ['LangChain'],
|
||
categories: ['AI'],
|
||
subcategories: {
|
||
AI: ['Chains', 'Root Nodes'],
|
||
},
|
||
resources: {
|
||
primaryDocumentation: [
|
||
{
|
||
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainretrievalqa/',
|
||
},
|
||
],
|
||
},
|
||
},
|
||
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
|
||
inputs: [
|
||
NodeConnectionType.Main,
|
||
{
|
||
displayName: 'Model',
|
||
maxConnections: 1,
|
||
type: NodeConnectionType.AiLanguageModel,
|
||
required: true,
|
||
},
|
||
{
|
||
displayName: 'Retriever',
|
||
maxConnections: 1,
|
||
type: NodeConnectionType.AiRetriever,
|
||
required: true,
|
||
},
|
||
],
|
||
outputs: [NodeConnectionType.Main],
|
||
credentials: [],
|
||
properties: [
|
||
getTemplateNoticeField(1960),
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.input }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.chat_input }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1.1],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Query',
|
||
name: 'query',
|
||
type: 'string',
|
||
required: true,
|
||
default: '={{ $json.chatInput }}',
|
||
displayOptions: {
|
||
show: {
|
||
'@version': [1.2],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Prompt',
|
||
name: 'promptType',
|
||
type: 'options',
|
||
options: [
|
||
{
|
||
// eslint-disable-next-line n8n-nodes-base/node-param-display-name-miscased
|
||
name: 'Take from previous node automatically',
|
||
value: 'auto',
|
||
description: 'Looks for an input field called chatInput',
|
||
},
|
||
{
|
||
// eslint-disable-next-line n8n-nodes-base/node-param-display-name-miscased
|
||
name: 'Define below',
|
||
value: 'define',
|
||
description:
|
||
'Use an expression to reference data in previous nodes or enter static text',
|
||
},
|
||
],
|
||
displayOptions: {
|
||
hide: {
|
||
'@version': [{ _cnd: { lte: 1.2 } }],
|
||
},
|
||
},
|
||
default: 'auto',
|
||
},
|
||
{
|
||
displayName: 'Text',
|
||
name: 'text',
|
||
type: 'string',
|
||
required: true,
|
||
default: '',
|
||
typeOptions: {
|
||
rows: 2,
|
||
},
|
||
displayOptions: {
|
||
show: {
|
||
promptType: ['define'],
|
||
},
|
||
},
|
||
},
|
||
{
|
||
displayName: 'Options',
|
||
name: 'options',
|
||
type: 'collection',
|
||
default: {},
|
||
placeholder: 'Add Option',
|
||
options: [
|
||
{
|
||
displayName: 'System Prompt Template',
|
||
name: 'systemPromptTemplate',
|
||
type: 'string',
|
||
default: SYSTEM_PROMPT_TEMPLATE,
|
||
description:
|
||
'Template string used for the system prompt. This should include the variable `{context}` for the provided context. For text completion models, you should also include the variable `{question}` for the user’s query.',
|
||
typeOptions: {
|
||
rows: 6,
|
||
},
|
||
},
|
||
],
|
||
},
|
||
],
|
||
};
|
||
|
||
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
||
this.logger.debug('Executing Retrieval QA Chain');
|
||
|
||
const model = (await this.getInputConnectionData(
|
||
NodeConnectionType.AiLanguageModel,
|
||
0,
|
||
)) as BaseLanguageModel;
|
||
|
||
const retriever = (await this.getInputConnectionData(
|
||
NodeConnectionType.AiRetriever,
|
||
0,
|
||
)) as BaseRetriever;
|
||
|
||
const items = this.getInputData();
|
||
|
||
const returnData: INodeExecutionData[] = [];
|
||
|
||
// Run for each item
|
||
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
|
||
try {
|
||
let query;
|
||
|
||
if (this.getNode().typeVersion <= 1.2) {
|
||
query = this.getNodeParameter('query', itemIndex) as string;
|
||
} else {
|
||
query = getPromptInputByType({
|
||
ctx: this,
|
||
i: itemIndex,
|
||
inputKey: 'text',
|
||
promptTypeKey: 'promptType',
|
||
});
|
||
}
|
||
|
||
if (query === undefined) {
|
||
throw new NodeOperationError(this.getNode(), 'The ‘query‘ parameter is empty.');
|
||
}
|
||
|
||
const options = this.getNodeParameter('options', itemIndex, {}) as {
|
||
systemPromptTemplate?: string;
|
||
};
|
||
|
||
const chainParameters = {} as {
|
||
prompt?: PromptTemplate | ChatPromptTemplate;
|
||
};
|
||
|
||
if (options.systemPromptTemplate !== undefined) {
|
||
if (isChatInstance(model)) {
|
||
const messages = [
|
||
SystemMessagePromptTemplate.fromTemplate(options.systemPromptTemplate),
|
||
HumanMessagePromptTemplate.fromTemplate('{question}'),
|
||
];
|
||
const chatPromptTemplate = ChatPromptTemplate.fromMessages(messages);
|
||
|
||
chainParameters.prompt = chatPromptTemplate;
|
||
} else {
|
||
const completionPromptTemplate = new PromptTemplate({
|
||
template: options.systemPromptTemplate,
|
||
inputVariables: ['context', 'question'],
|
||
});
|
||
|
||
chainParameters.prompt = completionPromptTemplate;
|
||
}
|
||
}
|
||
|
||
const chain = RetrievalQAChain.fromLLM(model, retriever, chainParameters);
|
||
|
||
const response = await chain.withConfig(getTracingConfig(this)).invoke({ query });
|
||
returnData.push({ json: { response } });
|
||
} catch (error) {
|
||
if (this.continueOnFail()) {
|
||
returnData.push({ json: { error: error.message }, pairedItem: { item: itemIndex } });
|
||
continue;
|
||
}
|
||
|
||
throw error;
|
||
}
|
||
}
|
||
return [returnData];
|
||
}
|
||
}
|