mirror of
https://github.com/n8n-io/n8n.git
synced 2025-01-09 20:07:31 -08:00
258 lines
7.4 KiB
TypeScript
258 lines
7.4 KiB
TypeScript
import type { BaseLanguageModel } from '@langchain/core/language_models/base';
|
|
import { HumanMessage } from '@langchain/core/messages';
|
|
import { SystemMessagePromptTemplate, ChatPromptTemplate } from '@langchain/core/prompts';
|
|
import { OutputFixingParser, StructuredOutputParser } from 'langchain/output_parsers';
|
|
import { NodeConnectionType, NodeOperationError } from 'n8n-workflow';
|
|
import type {
|
|
IDataObject,
|
|
IExecuteFunctions,
|
|
INodeExecutionData,
|
|
INodeParameters,
|
|
INodeType,
|
|
INodeTypeDescription,
|
|
} from 'n8n-workflow';
|
|
import { z } from 'zod';
|
|
|
|
import { getTracingConfig } from '@utils/tracing';
|
|
|
|
const DEFAULT_SYSTEM_PROMPT_TEMPLATE =
|
|
'You are highly intelligent and accurate sentiment analyzer. Analyze the sentiment of the provided text. Categorize it into one of the following: {categories}. Use the provided formatting instructions. Only output the JSON.';
|
|
|
|
const DEFAULT_CATEGORIES = 'Positive, Neutral, Negative';
|
|
const configuredOutputs = (parameters: INodeParameters, defaultCategories: string) => {
|
|
const options = (parameters?.options ?? {}) as IDataObject;
|
|
const categories = (options?.categories as string) ?? defaultCategories;
|
|
const categoriesArray = categories.split(',').map((cat) => cat.trim());
|
|
|
|
const ret = categoriesArray.map((cat) => ({ type: NodeConnectionType.Main, displayName: cat }));
|
|
return ret;
|
|
};
|
|
|
|
export class SentimentAnalysis implements INodeType {
|
|
description: INodeTypeDescription = {
|
|
displayName: 'Sentiment Analysis',
|
|
name: 'sentimentAnalysis',
|
|
icon: 'fa:balance-scale-left',
|
|
iconColor: 'black',
|
|
group: ['transform'],
|
|
version: 1,
|
|
description: 'Analyze the sentiment of your text',
|
|
codex: {
|
|
categories: ['AI'],
|
|
subcategories: {
|
|
AI: ['Chains', 'Root Nodes'],
|
|
},
|
|
resources: {
|
|
primaryDocumentation: [
|
|
{
|
|
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.sentimentanalysis/',
|
|
},
|
|
],
|
|
},
|
|
},
|
|
defaults: {
|
|
name: 'Sentiment Analysis',
|
|
},
|
|
inputs: [
|
|
{ displayName: '', type: NodeConnectionType.Main },
|
|
{
|
|
displayName: 'Model',
|
|
maxConnections: 1,
|
|
type: NodeConnectionType.AiLanguageModel,
|
|
required: true,
|
|
},
|
|
],
|
|
outputs: `={{(${configuredOutputs})($parameter, "${DEFAULT_CATEGORIES}")}}`,
|
|
properties: [
|
|
{
|
|
displayName: 'Text to Analyze',
|
|
name: 'inputText',
|
|
type: 'string',
|
|
required: true,
|
|
default: '',
|
|
description: 'Use an expression to reference data in previous nodes or enter static text',
|
|
typeOptions: {
|
|
rows: 2,
|
|
},
|
|
},
|
|
{
|
|
displayName:
|
|
'Sentiment scores are LLM-generated estimates, not statistically rigorous measurements. They may be inconsistent across runs and should be used as rough indicators only.',
|
|
name: 'detailedResultsNotice',
|
|
type: 'notice',
|
|
default: '',
|
|
displayOptions: {
|
|
show: {
|
|
'/options.includeDetailedResults': [true],
|
|
},
|
|
},
|
|
},
|
|
{
|
|
displayName: 'Options',
|
|
name: 'options',
|
|
type: 'collection',
|
|
default: {},
|
|
placeholder: 'Add Option',
|
|
options: [
|
|
{
|
|
displayName: 'Sentiment Categories',
|
|
name: 'categories',
|
|
type: 'string',
|
|
default: DEFAULT_CATEGORIES,
|
|
description: 'A comma-separated list of categories to analyze',
|
|
noDataExpression: true,
|
|
typeOptions: {
|
|
rows: 2,
|
|
},
|
|
},
|
|
{
|
|
displayName: 'System Prompt Template',
|
|
name: 'systemPromptTemplate',
|
|
type: 'string',
|
|
default: DEFAULT_SYSTEM_PROMPT_TEMPLATE,
|
|
description: 'String to use directly as the system prompt template',
|
|
typeOptions: {
|
|
rows: 6,
|
|
},
|
|
},
|
|
{
|
|
displayName: 'Include Detailed Results',
|
|
name: 'includeDetailedResults',
|
|
type: 'boolean',
|
|
default: false,
|
|
description:
|
|
'Whether to include sentiment strength and confidence scores in the output',
|
|
},
|
|
{
|
|
displayName: 'Enable Auto-Fixing',
|
|
name: 'enableAutoFixing',
|
|
type: 'boolean',
|
|
default: true,
|
|
description:
|
|
'Whether to enable auto-fixing (may trigger an additional LLM call if output is broken)',
|
|
},
|
|
],
|
|
},
|
|
],
|
|
};
|
|
|
|
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
|
|
const items = this.getInputData();
|
|
|
|
const llm = (await this.getInputConnectionData(
|
|
NodeConnectionType.AiLanguageModel,
|
|
0,
|
|
)) as BaseLanguageModel;
|
|
|
|
const returnData: INodeExecutionData[][] = [];
|
|
|
|
for (let i = 0; i < items.length; i++) {
|
|
try {
|
|
const sentimentCategories = this.getNodeParameter(
|
|
'options.categories',
|
|
i,
|
|
DEFAULT_CATEGORIES,
|
|
) as string;
|
|
|
|
const categories = sentimentCategories
|
|
.split(',')
|
|
.map((cat) => cat.trim())
|
|
.filter(Boolean);
|
|
|
|
if (categories.length === 0) {
|
|
throw new NodeOperationError(this.getNode(), 'No sentiment categories provided', {
|
|
itemIndex: i,
|
|
});
|
|
}
|
|
|
|
// Initialize returnData with empty arrays for each category
|
|
if (returnData.length === 0) {
|
|
returnData.push(...Array.from({ length: categories.length }, () => []));
|
|
}
|
|
|
|
const options = this.getNodeParameter('options', i, {}) as {
|
|
systemPromptTemplate?: string;
|
|
includeDetailedResults?: boolean;
|
|
enableAutoFixing?: boolean;
|
|
};
|
|
|
|
const schema = z.object({
|
|
sentiment: z.enum(categories as [string, ...string[]]),
|
|
strength: z
|
|
.number()
|
|
.min(0)
|
|
.max(1)
|
|
.describe('Strength score for sentiment in relation to the category'),
|
|
confidence: z.number().min(0).max(1),
|
|
});
|
|
|
|
const structuredParser = StructuredOutputParser.fromZodSchema(schema);
|
|
|
|
const parser = options.enableAutoFixing
|
|
? OutputFixingParser.fromLLM(llm, structuredParser)
|
|
: structuredParser;
|
|
|
|
const systemPromptTemplate = SystemMessagePromptTemplate.fromTemplate(
|
|
`${options.systemPromptTemplate ?? DEFAULT_SYSTEM_PROMPT_TEMPLATE}
|
|
{format_instructions}`,
|
|
);
|
|
|
|
const input = this.getNodeParameter('inputText', i) as string;
|
|
const inputPrompt = new HumanMessage(input);
|
|
const messages = [
|
|
await systemPromptTemplate.format({
|
|
categories: sentimentCategories,
|
|
format_instructions: parser.getFormatInstructions(),
|
|
}),
|
|
inputPrompt,
|
|
];
|
|
|
|
const prompt = ChatPromptTemplate.fromMessages(messages);
|
|
const chain = prompt.pipe(llm).pipe(parser).withConfig(getTracingConfig(this));
|
|
|
|
try {
|
|
const output = await chain.invoke(messages);
|
|
const sentimentIndex = categories.findIndex(
|
|
(s) => s.toLowerCase() === output.sentiment.toLowerCase(),
|
|
);
|
|
|
|
if (sentimentIndex !== -1) {
|
|
const resultItem = { ...items[i] };
|
|
const sentimentAnalysis: IDataObject = {
|
|
category: output.sentiment,
|
|
};
|
|
if (options.includeDetailedResults) {
|
|
sentimentAnalysis.strength = output.strength;
|
|
sentimentAnalysis.confidence = output.confidence;
|
|
}
|
|
resultItem.json = {
|
|
...resultItem.json,
|
|
sentimentAnalysis,
|
|
};
|
|
returnData[sentimentIndex].push(resultItem);
|
|
}
|
|
} catch (error) {
|
|
throw new NodeOperationError(
|
|
this.getNode(),
|
|
'Error during parsing of LLM output, please check your LLM model and configuration',
|
|
{
|
|
itemIndex: i,
|
|
},
|
|
);
|
|
}
|
|
} catch (error) {
|
|
if (this.continueOnFail()) {
|
|
const executionErrorData = this.helpers.constructExecutionMetaData(
|
|
this.helpers.returnJsonArray({ error: error.message }),
|
|
{ itemData: { item: i } },
|
|
);
|
|
returnData[0].push(...executionErrorData);
|
|
continue;
|
|
}
|
|
throw error;
|
|
}
|
|
}
|
|
return returnData;
|
|
}
|
|
}
|