n8n/packages/@n8n/nodes-langchain/utils/logWrapper.ts
Jan Oberhauser 87def60979
feat: Add AI tool building capabilities (#7336)
Github issue / Community forum post (link here to close automatically):
https://community.n8n.io/t/langchain-memory-chat/23733

---------

Signed-off-by: Oleg Ivaniv <me@olegivaniv.com>
Co-authored-by: Oleg Ivaniv <me@olegivaniv.com>
Co-authored-by: Val <68596159+valya@users.noreply.github.com>
Co-authored-by: Alex Grozav <alex@grozav.com>
Co-authored-by: कारतोफ्फेलस्क्रिप्ट™ <aditya@netroy.in>
Co-authored-by: Deborah <deborah@starfallprojects.co.uk>
Co-authored-by: Jesper Bylund <mail@jesperbylund.com>
Co-authored-by: Jon <jonathan.bennetts@gmail.com>
Co-authored-by: Michael Kret <88898367+michael-radency@users.noreply.github.com>
Co-authored-by: Giulio Andreini <andreini@netseven.it>
Co-authored-by: Mason Geloso <Mason.geloso@gmail.com>
Co-authored-by: Mason Geloso <hone@Masons-Mac-mini.local>
Co-authored-by: Mutasem Aldmour <mutasem@n8n.io>
2023-11-29 12:13:55 +01:00

501 lines
16 KiB
TypeScript

import {
NodeOperationError,
type ConnectionTypes,
type IExecuteFunctions,
type INodeExecutionData,
NodeConnectionType,
} from 'n8n-workflow';
import { Tool } from 'langchain/tools';
import type { BaseMessage, ChatResult, InputValues } from 'langchain/schema';
import { BaseChatMessageHistory } from 'langchain/schema';
import { BaseChatModel } from 'langchain/chat_models/base';
import type { CallbackManagerForLLMRun } from 'langchain/callbacks';
import { Embeddings } from 'langchain/embeddings/base';
import { VectorStore } from 'langchain/vectorstores/base';
import type { Document } from 'langchain/document';
import { TextSplitter } from 'langchain/text_splitter';
import type { BaseDocumentLoader } from 'langchain/document_loaders/base';
import type { BaseCallbackConfig, Callbacks } from 'langchain/dist/callbacks/manager';
import { BaseLLM } from 'langchain/llms/base';
import { BaseChatMemory } from 'langchain/memory';
import type { MemoryVariables } from 'langchain/dist/memory/base';
import { BaseRetriever } from 'langchain/schema/retriever';
import type { FormatInstructionsOptions } from 'langchain/schema/output_parser';
import { BaseOutputParser } from 'langchain/schema/output_parser';
import { isObject } from 'lodash';
import { N8nJsonLoader } from './N8nJsonLoader';
import { N8nBinaryLoader } from './N8nBinaryLoader';
const errorsMap: { [key: string]: { message: string; description: string } } = {
'You exceeded your current quota, please check your plan and billing details.': {
message: 'OpenAI quota exceeded',
description: 'You exceeded your current quota, please check your plan and billing details.',
},
};
export async function callMethodAsync<T>(
this: T,
parameters: {
executeFunctions: IExecuteFunctions;
connectionType: ConnectionTypes;
currentNodeRunIndex: number;
method: (...args: any[]) => Promise<unknown>;
arguments: unknown[];
},
): Promise<unknown> {
try {
return await parameters.method.call(this, ...parameters.arguments);
} catch (e) {
const connectedNode = parameters.executeFunctions.getNode();
const error = new NodeOperationError(connectedNode, e, {
functionality: 'configuration-node',
});
if (errorsMap[error.message]) {
error.description = errorsMap[error.message].description;
error.message = errorsMap[error.message].message;
}
parameters.executeFunctions.addOutputData(
parameters.connectionType,
parameters.currentNodeRunIndex,
error,
);
if (error.message) {
error.description = error.message;
throw error;
}
throw new NodeOperationError(
connectedNode,
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
{ functionality: 'configuration-node' },
);
}
}
export function callMethodSync<T>(
this: T,
parameters: {
executeFunctions: IExecuteFunctions;
connectionType: ConnectionTypes;
currentNodeRunIndex: number;
method: (...args: any[]) => T;
arguments: unknown[];
},
): unknown {
try {
return parameters.method.call(this, ...parameters.arguments);
} catch (e) {
const connectedNode = parameters.executeFunctions.getNode();
const error = new NodeOperationError(connectedNode, e);
parameters.executeFunctions.addOutputData(
parameters.connectionType,
parameters.currentNodeRunIndex,
error,
);
throw new NodeOperationError(
connectedNode,
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
{ functionality: 'configuration-node' },
);
}
}
export function logWrapper(
originalInstance:
| Tool
| BaseChatModel
| BaseChatMemory
| BaseLLM
| BaseChatMessageHistory
| BaseOutputParser
| BaseRetriever
| Embeddings
| Document[]
| Document
| BaseDocumentLoader
| TextSplitter
| VectorStore
| N8nBinaryLoader
| N8nJsonLoader,
executeFunctions: IExecuteFunctions,
) {
return new Proxy(originalInstance, {
get: (target, prop) => {
let connectionType: ConnectionTypes | undefined;
// ========== BaseChatMemory ==========
if (originalInstance instanceof BaseChatMemory) {
if (prop === 'loadMemoryVariables' && 'loadMemoryVariables' in target) {
return async (values: InputValues): Promise<MemoryVariables> => {
connectionType = NodeConnectionType.AiMemory;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'loadMemoryVariables', values } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [values],
})) as MemoryVariables;
executeFunctions.addOutputData(connectionType, index, [
[{ json: { action: 'loadMemoryVariables', response } }],
]);
return response;
};
} else if (
prop === 'outputKey' &&
'outputKey' in target &&
target.constructor.name === 'BufferWindowMemory'
) {
connectionType = NodeConnectionType.AiMemory;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'chatHistory' } }],
]);
const response = target[prop];
target.chatHistory
.getMessages()
.then((messages) => {
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
[{ json: { action: 'chatHistory', chatHistory: messages } }],
]);
})
.catch((error: Error) => {
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
[{ json: { action: 'chatHistory', error } }],
]);
});
return response;
}
}
// ========== BaseChatMessageHistory ==========
if (originalInstance instanceof BaseChatMessageHistory) {
if (prop === 'getMessages' && 'getMessages' in target) {
return async (): Promise<BaseMessage[]> => {
connectionType = NodeConnectionType.AiMemory;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'getMessages' } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [],
})) as BaseMessage[];
executeFunctions.addOutputData(connectionType, index, [
[{ json: { action: 'getMessages', response } }],
]);
return response;
};
} else if (prop === 'addMessage' && 'addMessage' in target) {
return async (message: BaseMessage): Promise<void> => {
connectionType = NodeConnectionType.AiMemory;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'addMessage', message } }],
]);
await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [message],
});
executeFunctions.addOutputData(connectionType, index, [
[{ json: { action: 'addMessage' } }],
]);
};
}
}
// ========== BaseChatModel ==========
if (originalInstance instanceof BaseLLM || originalInstance instanceof BaseChatModel) {
if (prop === '_generate' && '_generate' in target) {
return async (
messages: BaseMessage[] & string[],
options: any,
runManager?: CallbackManagerForLLMRun,
): Promise<ChatResult> => {
connectionType = NodeConnectionType.AiLanguageModel;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { messages, options } }],
]);
try {
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [
messages,
{ ...options, signal: executeFunctions.getExecutionCancelSignal() },
runManager,
],
})) as ChatResult;
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
} catch (error) {
// Mute AbortError as they are expected
if (error?.name === 'AbortError') return { generations: [] };
throw error;
}
};
}
}
// ========== BaseOutputParser ==========
if (originalInstance instanceof BaseOutputParser) {
if (prop === 'getFormatInstructions' && 'getFormatInstructions' in target) {
return (options?: FormatInstructionsOptions): string => {
connectionType = NodeConnectionType.AiOutputParser;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'getFormatInstructions' } }],
]);
// @ts-ignore
const response = callMethodSync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [options],
}) as string;
executeFunctions.addOutputData(connectionType, index, [
[{ json: { action: 'getFormatInstructions', response } }],
]);
return response;
};
} else if (prop === 'parse' && 'parse' in target) {
return async (text: string | Record<string, unknown>): Promise<unknown> => {
connectionType = NodeConnectionType.AiOutputParser;
const stringifiedText = isObject(text) ? JSON.stringify(text) : text;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { action: 'parse', text: stringifiedText } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [stringifiedText],
})) as object;
executeFunctions.addOutputData(connectionType, index, [
[{ json: { action: 'parse', response } }],
]);
return response;
};
}
}
// ========== BaseRetriever ==========
if (originalInstance instanceof BaseRetriever) {
if (prop === 'getRelevantDocuments' && 'getRelevantDocuments' in target) {
return async (
query: string,
config?: Callbacks | BaseCallbackConfig,
): Promise<Document[]> => {
connectionType = NodeConnectionType.AiRetriever;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { query, config } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [query, config],
})) as Array<Document<Record<string, any>>>;
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
}
// ========== Embeddings ==========
if (originalInstance instanceof Embeddings) {
// Docs -> Embeddings
if (prop === 'embedDocuments' && 'embedDocuments' in target) {
return async (documents: string[]): Promise<number[][]> => {
connectionType = NodeConnectionType.AiEmbedding;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { documents } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [documents],
})) as number[][];
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
// Query -> Embeddings
if (prop === 'embedQuery' && 'embedQuery' in target) {
return async (query: string): Promise<number[]> => {
connectionType = NodeConnectionType.AiEmbedding;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { query } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [query],
})) as number[];
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
}
// ========== N8n Loaders Process All ==========
if (
originalInstance instanceof N8nJsonLoader ||
originalInstance instanceof N8nBinaryLoader
) {
// Process All
if (prop === 'processAll' && 'processAll' in target) {
return async (items: INodeExecutionData[]): Promise<number[]> => {
connectionType = NodeConnectionType.AiDocument;
const { index } = executeFunctions.addInputData(connectionType, [items]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [items],
})) as number[];
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
// Process Each
if (prop === 'processItem' && 'processItem' in target) {
return async (item: INodeExecutionData, itemIndex: number): Promise<number[]> => {
connectionType = NodeConnectionType.AiDocument;
const { index } = executeFunctions.addInputData(connectionType, [[item]]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [item, itemIndex],
})) as number[];
executeFunctions.addOutputData(connectionType, index, [
[{ json: { response }, pairedItem: { item: itemIndex } }],
]);
return response;
};
}
}
// ========== TextSplitter ==========
if (originalInstance instanceof TextSplitter) {
if (prop === 'splitText' && 'splitText' in target) {
return async (text: string): Promise<string[]> => {
connectionType = NodeConnectionType.AiTextSplitter;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { textSplitter: text } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [text],
})) as string[];
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
}
// ========== Tool ==========
if (originalInstance instanceof Tool) {
if (prop === '_call' && '_call' in target) {
return async (query: string): Promise<string> => {
connectionType = NodeConnectionType.AiTool;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { query } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [query],
})) as string;
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
}
// ========== VectorStore ==========
if (originalInstance instanceof VectorStore) {
if (prop === 'similaritySearch' && 'similaritySearch' in target) {
return async (
query: string,
k?: number,
// @ts-ignore
filter?: BiquadFilterType | undefined,
_callbacks?: Callbacks | undefined,
): Promise<Document[]> => {
connectionType = NodeConnectionType.AiVectorStore;
const { index } = executeFunctions.addInputData(connectionType, [
[{ json: { query, k, filter } }],
]);
const response = (await callMethodAsync.call(target, {
executeFunctions,
connectionType,
currentNodeRunIndex: index,
method: target[prop],
arguments: [query, k, filter, _callbacks],
})) as Array<Document<Record<string, any>>>;
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
return response;
};
}
}
return (target as any)[prop];
},
});
}