n8n/packages/@n8n/nodes-langchain/nodes/llms/LmChatMistralCloud/LmChatMistralCloud.node.ts
2024-08-05 13:59:02 +02:00

200 lines
5.4 KiB
TypeScript

/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeType,
type INodeTypeDescription,
type SupplyData,
} from 'n8n-workflow';
import type { ChatMistralAIInput } from '@langchain/mistralai';
import { ChatMistralAI } from '@langchain/mistralai';
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
import { N8nLlmTracing } from '../N8nLlmTracing';
export class LmChatMistralCloud implements INodeType {
description: INodeTypeDescription = {
displayName: 'Mistral Cloud Chat Model',
// eslint-disable-next-line n8n-nodes-base/node-class-description-name-miscased
name: 'lmChatMistralCloud',
icon: 'file:mistral.svg',
group: ['transform'],
version: 1,
description: 'For advanced usage with an AI chain',
defaults: {
name: 'Mistral Cloud Chat Model',
},
codex: {
categories: ['AI'],
subcategories: {
AI: ['Language Models', 'Root Nodes'],
'Language Models': ['Chat Models (Recommended)'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.lmchatmistralcloud/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [],
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs: [NodeConnectionType.AiLanguageModel],
outputNames: ['Model'],
credentials: [
{
name: 'mistralCloudApi',
required: true,
},
],
requestDefaults: {
ignoreHttpStatusErrors: true,
baseURL: 'https://api.mistral.ai/v1',
},
properties: [
getConnectionHintNoticeField([NodeConnectionType.AiChain, NodeConnectionType.AiAgent]),
{
displayName: 'Model',
name: 'model',
type: 'options',
description:
'The model which will generate the completion. <a href="https://docs.mistral.ai/platform/endpoints/">Learn more</a>.',
typeOptions: {
loadOptions: {
routing: {
request: {
method: 'GET',
url: '/models',
},
output: {
postReceive: [
{
type: 'rootProperty',
properties: {
property: 'data',
},
},
{
type: 'filter',
properties: {
pass: "={{ !$responseItem.id.includes('embed') }}",
},
},
{
type: 'setKeyValue',
properties: {
name: '={{ $responseItem.id }}',
value: '={{ $responseItem.id }}',
},
},
{
type: 'sort',
properties: {
key: 'name',
},
},
],
},
},
},
},
routing: {
send: {
type: 'body',
property: 'model',
},
},
default: 'mistral-small',
},
{
displayName: 'Options',
name: 'options',
placeholder: 'Add Option',
description: 'Additional options to add',
type: 'collection',
default: {},
options: [
{
displayName: 'Maximum Number of Tokens',
name: 'maxTokens',
default: -1,
description:
'The maximum number of tokens to generate in the completion. Most models have a context length of 2048 tokens (except for the newest models, which support 32,768).',
type: 'number',
typeOptions: {
maxValue: 32768,
},
},
{
displayName: 'Sampling Temperature',
name: 'temperature',
default: 0.7,
typeOptions: { maxValue: 1, minValue: 0, numberPrecision: 1 },
description:
'Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.',
type: 'number',
},
{
displayName: 'Max Retries',
name: 'maxRetries',
default: 2,
description: 'Maximum number of retries to attempt',
type: 'number',
},
{
displayName: 'Top P',
name: 'topP',
default: 1,
typeOptions: { maxValue: 1, minValue: 0, numberPrecision: 1 },
description:
'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered. We generally recommend altering this or temperature but not both.',
type: 'number',
},
{
displayName: 'Enable Safe Mode',
name: 'safeMode',
default: false,
type: 'boolean',
description: 'Whether to inject a safety prompt before all conversations',
},
{
displayName: 'Random Seed',
name: 'randomSeed',
default: undefined,
type: 'number',
description:
'The seed to use for random sampling. If set, different calls will generate deterministic results.',
},
],
},
],
};
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise<SupplyData> {
const credentials = await this.getCredentials('mistralCloudApi');
const modelName = this.getNodeParameter('model', itemIndex) as string;
const options = this.getNodeParameter('options', itemIndex, {
maxRetries: 2,
topP: 1,
temperature: 0.7,
maxTokens: -1,
safeMode: false,
randomSeed: undefined,
}) as Partial<ChatMistralAIInput>;
const model = new ChatMistralAI({
apiKey: credentials.apiKey as string,
modelName,
...options,
callbacks: [new N8nLlmTracing(this)],
});
return {
response: model,
};
}
}