n8n/packages/@n8n/nodes-langchain/nodes/chains/ChainSummarization/V1/ChainSummarizationV1.node.ts
oleg dcf12867b3
feat: AI nodes usability fixes + Summarization Chain V2 (#7949)
Fixes:
- Refactor connection snapping when dragging and enable it also for
non-main connection types
- Fix propagation of errors from sub-nodes
- Fix chat scrolling when sending/receiving messages
- Prevent empty chat messages
- Fix sub-node selected styles
- Fix output names text overflow

Usability improvements:
- Auto-add manual chat trigger for agents & chain nodes
- Various labels and description updates
- Make the output parser input optional for Basic LLM Chain
- Summarization Chain V2 with a simplified document loader & text
chunking mode

#### How to test the change:
Example workflow showcasing different operation mode of the new
summarization chain:

[Summarization_V2.json](https://github.com/n8n-io/n8n/files/13599901/Summarization_V2.json)


## Issues fixed
Include links to Github issue or Community forum post or **Linear
ticket**:
> Important in order to close automatically and provide context to
reviewers
-
https://www.notion.so/n8n/David-Langchain-Posthog-notes-7a9294938420403095f4508f1a21d31d
- https://linear.app/n8n/issue/N8N-7070/ux-fixes-batch
- https://linear.app/n8n/issue/N8N-7071/ai-sub-node-bugs


## Review / Merge checklist
- [x] PR title and summary are descriptive. **Remember, the title
automatically goes into the changelog. Use `(no-changelog)` otherwise.**
([conventions](https://github.com/n8n-io/n8n/blob/master/.github/pull_request_title_conventions.md))
- [x] [Docs updated](https://github.com/n8n-io/n8n-docs) or follow-up
ticket created.
- [ ] Tests included.
> A bug is not considered fixed, unless a test is added to prevent it
from happening again. A feature is not complete without tests.
  >
> *(internal)* You can use Slack commands to trigger [e2e
tests](https://www.notion.so/n8n/How-to-use-Test-Instances-d65f49dfc51f441ea44367fb6f67eb0a?pvs=4#a39f9e5ba64a48b58a71d81c837e8227)
or [deploy test
instance](https://www.notion.so/n8n/How-to-use-Test-Instances-d65f49dfc51f441ea44367fb6f67eb0a?pvs=4#f6a177d32bde4b57ae2da0b8e454bfce)
or [deploy early access version on
Cloud](https://www.notion.so/n8n/Cloudbot-3dbe779836004972b7057bc989526998?pvs=4#fef2d36ab02247e1a0f65a74f6fb534e).

---------

Signed-off-by: Oleg Ivaniv <me@olegivaniv.com>
Co-authored-by: Elias Meire <elias@meire.dev>
2023-12-08 13:42:32 +01:00

264 lines
6.8 KiB
TypeScript

import {
NodeConnectionType,
type INodeTypeBaseDescription,
type IExecuteFunctions,
type INodeExecutionData,
type INodeType,
type INodeTypeDescription,
} from 'n8n-workflow';
import type { SummarizationChainParams } from 'langchain/chains';
import { loadSummarizationChain } from 'langchain/chains';
import type { BaseLanguageModel } from 'langchain/dist/base_language';
import type { Document } from 'langchain/document';
import { PromptTemplate } from 'langchain/prompts';
import { N8nJsonLoader } from '../../../../utils/N8nJsonLoader';
import { N8nBinaryLoader } from '../../../../utils/N8nBinaryLoader';
import { getTemplateNoticeField } from '../../../../utils/sharedFields';
import { REFINE_PROMPT_TEMPLATE, DEFAULT_PROMPT_TEMPLATE } from '../prompt';
export class ChainSummarizationV1 implements INodeType {
description: INodeTypeDescription;
constructor(baseDescription: INodeTypeBaseDescription) {
this.description = {
...baseDescription,
version: 1,
defaults: {
name: 'Summarization Chain',
color: '#909298',
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [
NodeConnectionType.Main,
{
displayName: 'Model',
maxConnections: 1,
type: NodeConnectionType.AiLanguageModel,
required: true,
},
{
displayName: 'Document',
maxConnections: 1,
type: NodeConnectionType.AiDocument,
required: true,
},
],
outputs: [NodeConnectionType.Main],
credentials: [],
properties: [
getTemplateNoticeField(1951),
{
displayName: 'Type',
name: 'type',
type: 'options',
description: 'The type of summarization to run',
default: 'map_reduce',
options: [
{
name: 'Map Reduce (Recommended)',
value: 'map_reduce',
description:
'Summarize each document (or chunk) individually, then summarize those summaries',
},
{
name: 'Refine',
value: 'refine',
description:
'Summarize the first document (or chunk). Then update that summary based on the next document (or chunk), and repeat.',
},
{
name: 'Stuff',
value: 'stuff',
description: 'Pass all documents (or chunks) at once. Ideal for small datasets.',
},
],
},
{
displayName: 'Options',
name: 'options',
type: 'collection',
default: {},
placeholder: 'Add Option',
options: [
{
displayName: 'Final Prompt to Combine',
name: 'combineMapPrompt',
type: 'string',
hint: 'The prompt to combine individual summaries',
displayOptions: {
show: {
'/type': ['map_reduce'],
},
},
default: DEFAULT_PROMPT_TEMPLATE,
typeOptions: {
rows: 6,
},
},
{
displayName: 'Individual Summary Prompt',
name: 'prompt',
type: 'string',
default: DEFAULT_PROMPT_TEMPLATE,
hint: 'The prompt to summarize an individual document (or chunk)',
displayOptions: {
show: {
'/type': ['map_reduce'],
},
},
typeOptions: {
rows: 6,
},
},
{
displayName: 'Prompt',
name: 'prompt',
type: 'string',
default: DEFAULT_PROMPT_TEMPLATE,
displayOptions: {
show: {
'/type': ['stuff'],
},
},
typeOptions: {
rows: 6,
},
},
{
displayName: 'Subsequent (Refine) Prompt',
name: 'refinePrompt',
type: 'string',
displayOptions: {
show: {
'/type': ['refine'],
},
},
default: REFINE_PROMPT_TEMPLATE,
hint: 'The prompt to refine the summary based on the next document (or chunk)',
typeOptions: {
rows: 6,
},
},
{
displayName: 'Initial Prompt',
name: 'refineQuestionPrompt',
type: 'string',
displayOptions: {
show: {
'/type': ['refine'],
},
},
default: DEFAULT_PROMPT_TEMPLATE,
hint: 'The prompt for the first document (or chunk)',
typeOptions: {
rows: 6,
},
},
],
},
],
};
}
async execute(this: IExecuteFunctions): Promise<INodeExecutionData[][]> {
this.logger.verbose('Executing Vector Store QA Chain');
const type = this.getNodeParameter('type', 0) as 'map_reduce' | 'stuff' | 'refine';
const model = (await this.getInputConnectionData(
NodeConnectionType.AiLanguageModel,
0,
)) as BaseLanguageModel;
const documentInput = (await this.getInputConnectionData(NodeConnectionType.AiDocument, 0)) as
| N8nJsonLoader
| Array<Document<Record<string, unknown>>>;
const options = this.getNodeParameter('options', 0, {}) as {
prompt?: string;
refineQuestionPrompt?: string;
refinePrompt?: string;
combineMapPrompt?: string;
};
const chainArgs: SummarizationChainParams = {
type,
};
// Map reduce prompt override
if (type === 'map_reduce') {
const mapReduceArgs = chainArgs as SummarizationChainParams & {
type: 'map_reduce';
};
if (options.combineMapPrompt) {
mapReduceArgs.combineMapPrompt = new PromptTemplate({
template: options.combineMapPrompt,
inputVariables: ['text'],
});
}
if (options.prompt) {
mapReduceArgs.combinePrompt = new PromptTemplate({
template: options.prompt,
inputVariables: ['text'],
});
}
}
// Stuff prompt override
if (type === 'stuff') {
const stuffArgs = chainArgs as SummarizationChainParams & {
type: 'stuff';
};
if (options.prompt) {
stuffArgs.prompt = new PromptTemplate({
template: options.prompt,
inputVariables: ['text'],
});
}
}
// Refine prompt override
if (type === 'refine') {
const refineArgs = chainArgs as SummarizationChainParams & {
type: 'refine';
};
if (options.refinePrompt) {
refineArgs.refinePrompt = new PromptTemplate({
template: options.refinePrompt,
inputVariables: ['existing_answer', 'text'],
});
}
if (options.refineQuestionPrompt) {
refineArgs.questionPrompt = new PromptTemplate({
template: options.refineQuestionPrompt,
inputVariables: ['text'],
});
}
}
const chain = loadSummarizationChain(model, chainArgs);
const items = this.getInputData();
const returnData: INodeExecutionData[] = [];
for (let itemIndex = 0; itemIndex < items.length; itemIndex++) {
let processedDocuments: Document[];
if (documentInput instanceof N8nJsonLoader || documentInput instanceof N8nBinaryLoader) {
processedDocuments = await documentInput.processItem(items[itemIndex], itemIndex);
} else {
processedDocuments = documentInput;
}
const response = await chain.call({
input_documents: processedDocuments,
});
returnData.push({ json: { response } });
}
return this.prepareOutputData(returnData);
}
}