mirror of
https://github.com/n8n-io/n8n.git
synced 2024-11-15 00:54:06 -08:00
dcf12867b3
Fixes: - Refactor connection snapping when dragging and enable it also for non-main connection types - Fix propagation of errors from sub-nodes - Fix chat scrolling when sending/receiving messages - Prevent empty chat messages - Fix sub-node selected styles - Fix output names text overflow Usability improvements: - Auto-add manual chat trigger for agents & chain nodes - Various labels and description updates - Make the output parser input optional for Basic LLM Chain - Summarization Chain V2 with a simplified document loader & text chunking mode #### How to test the change: Example workflow showcasing different operation mode of the new summarization chain: [Summarization_V2.json](https://github.com/n8n-io/n8n/files/13599901/Summarization_V2.json) ## Issues fixed Include links to Github issue or Community forum post or **Linear ticket**: > Important in order to close automatically and provide context to reviewers - https://www.notion.so/n8n/David-Langchain-Posthog-notes-7a9294938420403095f4508f1a21d31d - https://linear.app/n8n/issue/N8N-7070/ux-fixes-batch - https://linear.app/n8n/issue/N8N-7071/ai-sub-node-bugs ## Review / Merge checklist - [x] PR title and summary are descriptive. **Remember, the title automatically goes into the changelog. Use `(no-changelog)` otherwise.** ([conventions](https://github.com/n8n-io/n8n/blob/master/.github/pull_request_title_conventions.md)) - [x] [Docs updated](https://github.com/n8n-io/n8n-docs) or follow-up ticket created. - [ ] Tests included. > A bug is not considered fixed, unless a test is added to prevent it from happening again. A feature is not complete without tests. > > *(internal)* You can use Slack commands to trigger [e2e tests](https://www.notion.so/n8n/How-to-use-Test-Instances-d65f49dfc51f441ea44367fb6f67eb0a?pvs=4#a39f9e5ba64a48b58a71d81c837e8227) or [deploy test instance](https://www.notion.so/n8n/How-to-use-Test-Instances-d65f49dfc51f441ea44367fb6f67eb0a?pvs=4#f6a177d32bde4b57ae2da0b8e454bfce) or [deploy early access version on Cloud](https://www.notion.so/n8n/Cloudbot-3dbe779836004972b7057bc989526998?pvs=4#fef2d36ab02247e1a0f65a74f6fb534e). --------- Signed-off-by: Oleg Ivaniv <me@olegivaniv.com> Co-authored-by: Elias Meire <elias@meire.dev>
505 lines
16 KiB
TypeScript
505 lines
16 KiB
TypeScript
import {
|
|
NodeOperationError,
|
|
type ConnectionTypes,
|
|
type IExecuteFunctions,
|
|
type INodeExecutionData,
|
|
NodeConnectionType,
|
|
} from 'n8n-workflow';
|
|
|
|
import { Tool } from 'langchain/tools';
|
|
import type { BaseMessage, ChatResult, InputValues } from 'langchain/schema';
|
|
import { BaseChatMessageHistory } from 'langchain/schema';
|
|
import { BaseChatModel } from 'langchain/chat_models/base';
|
|
import type { CallbackManagerForLLMRun } from 'langchain/callbacks';
|
|
|
|
import { Embeddings } from 'langchain/embeddings/base';
|
|
import { VectorStore } from 'langchain/vectorstores/base';
|
|
import type { Document } from 'langchain/document';
|
|
import { TextSplitter } from 'langchain/text_splitter';
|
|
import type { BaseDocumentLoader } from 'langchain/document_loaders/base';
|
|
import type { BaseCallbackConfig, Callbacks } from 'langchain/dist/callbacks/manager';
|
|
import { BaseLLM } from 'langchain/llms/base';
|
|
import { BaseChatMemory } from 'langchain/memory';
|
|
import type { MemoryVariables } from 'langchain/dist/memory/base';
|
|
import { BaseRetriever } from 'langchain/schema/retriever';
|
|
import type { FormatInstructionsOptions } from 'langchain/schema/output_parser';
|
|
import { BaseOutputParser } from 'langchain/schema/output_parser';
|
|
import { isObject } from 'lodash';
|
|
import { N8nJsonLoader } from './N8nJsonLoader';
|
|
import { N8nBinaryLoader } from './N8nBinaryLoader';
|
|
|
|
const errorsMap: { [key: string]: { message: string; description: string } } = {
|
|
'You exceeded your current quota, please check your plan and billing details.': {
|
|
message: 'OpenAI quota exceeded',
|
|
description: 'You exceeded your current quota, please check your plan and billing details.',
|
|
},
|
|
};
|
|
|
|
export async function callMethodAsync<T>(
|
|
this: T,
|
|
parameters: {
|
|
executeFunctions: IExecuteFunctions;
|
|
connectionType: ConnectionTypes;
|
|
currentNodeRunIndex: number;
|
|
method: (...args: any[]) => Promise<unknown>;
|
|
arguments: unknown[];
|
|
},
|
|
): Promise<unknown> {
|
|
try {
|
|
return await parameters.method.call(this, ...parameters.arguments);
|
|
} catch (e) {
|
|
// Propagate errors from sub-nodes
|
|
if (e.functionality === 'configuration-node') throw e;
|
|
const connectedNode = parameters.executeFunctions.getNode();
|
|
|
|
const error = new NodeOperationError(connectedNode, e, {
|
|
functionality: 'configuration-node',
|
|
});
|
|
|
|
if (errorsMap[error.message]) {
|
|
error.description = errorsMap[error.message].description;
|
|
error.message = errorsMap[error.message].message;
|
|
}
|
|
|
|
parameters.executeFunctions.addOutputData(
|
|
parameters.connectionType,
|
|
parameters.currentNodeRunIndex,
|
|
error,
|
|
);
|
|
if (error.message) {
|
|
error.description = error.message;
|
|
throw error;
|
|
}
|
|
throw new NodeOperationError(
|
|
connectedNode,
|
|
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
|
|
{ functionality: 'configuration-node' },
|
|
);
|
|
}
|
|
}
|
|
|
|
export function callMethodSync<T>(
|
|
this: T,
|
|
parameters: {
|
|
executeFunctions: IExecuteFunctions;
|
|
connectionType: ConnectionTypes;
|
|
currentNodeRunIndex: number;
|
|
method: (...args: any[]) => T;
|
|
arguments: unknown[];
|
|
},
|
|
): unknown {
|
|
try {
|
|
return parameters.method.call(this, ...parameters.arguments);
|
|
} catch (e) {
|
|
// Propagate errors from sub-nodes
|
|
if (e.functionality === 'configuration-node') throw e;
|
|
const connectedNode = parameters.executeFunctions.getNode();
|
|
const error = new NodeOperationError(connectedNode, e);
|
|
parameters.executeFunctions.addOutputData(
|
|
parameters.connectionType,
|
|
parameters.currentNodeRunIndex,
|
|
error,
|
|
);
|
|
throw new NodeOperationError(
|
|
connectedNode,
|
|
`Error on node "${connectedNode.name}" which is connected via input "${parameters.connectionType}"`,
|
|
{ functionality: 'configuration-node' },
|
|
);
|
|
}
|
|
}
|
|
|
|
export function logWrapper(
|
|
originalInstance:
|
|
| Tool
|
|
| BaseChatModel
|
|
| BaseChatMemory
|
|
| BaseLLM
|
|
| BaseChatMessageHistory
|
|
| BaseOutputParser
|
|
| BaseRetriever
|
|
| Embeddings
|
|
| Document[]
|
|
| Document
|
|
| BaseDocumentLoader
|
|
| TextSplitter
|
|
| VectorStore
|
|
| N8nBinaryLoader
|
|
| N8nJsonLoader,
|
|
executeFunctions: IExecuteFunctions,
|
|
) {
|
|
return new Proxy(originalInstance, {
|
|
get: (target, prop) => {
|
|
let connectionType: ConnectionTypes | undefined;
|
|
// ========== BaseChatMemory ==========
|
|
if (originalInstance instanceof BaseChatMemory) {
|
|
if (prop === 'loadMemoryVariables' && 'loadMemoryVariables' in target) {
|
|
return async (values: InputValues): Promise<MemoryVariables> => {
|
|
connectionType = NodeConnectionType.AiMemory;
|
|
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'loadMemoryVariables', values } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [values],
|
|
})) as MemoryVariables;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { action: 'loadMemoryVariables', response } }],
|
|
]);
|
|
return response;
|
|
};
|
|
} else if (
|
|
prop === 'outputKey' &&
|
|
'outputKey' in target &&
|
|
target.constructor.name === 'BufferWindowMemory'
|
|
) {
|
|
connectionType = NodeConnectionType.AiMemory;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'chatHistory' } }],
|
|
]);
|
|
const response = target[prop];
|
|
|
|
target.chatHistory
|
|
.getMessages()
|
|
.then((messages) => {
|
|
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
|
|
[{ json: { action: 'chatHistory', chatHistory: messages } }],
|
|
]);
|
|
})
|
|
.catch((error: Error) => {
|
|
executeFunctions.addOutputData(NodeConnectionType.AiMemory, index, [
|
|
[{ json: { action: 'chatHistory', error } }],
|
|
]);
|
|
});
|
|
return response;
|
|
}
|
|
}
|
|
|
|
// ========== BaseChatMessageHistory ==========
|
|
if (originalInstance instanceof BaseChatMessageHistory) {
|
|
if (prop === 'getMessages' && 'getMessages' in target) {
|
|
return async (): Promise<BaseMessage[]> => {
|
|
connectionType = NodeConnectionType.AiMemory;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'getMessages' } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [],
|
|
})) as BaseMessage[];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { action: 'getMessages', response } }],
|
|
]);
|
|
return response;
|
|
};
|
|
} else if (prop === 'addMessage' && 'addMessage' in target) {
|
|
return async (message: BaseMessage): Promise<void> => {
|
|
connectionType = NodeConnectionType.AiMemory;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'addMessage', message } }],
|
|
]);
|
|
|
|
await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [message],
|
|
});
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { action: 'addMessage' } }],
|
|
]);
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== BaseChatModel ==========
|
|
if (originalInstance instanceof BaseLLM || originalInstance instanceof BaseChatModel) {
|
|
if (prop === '_generate' && '_generate' in target) {
|
|
return async (
|
|
messages: BaseMessage[] & string[],
|
|
options: any,
|
|
runManager?: CallbackManagerForLLMRun,
|
|
): Promise<ChatResult> => {
|
|
connectionType = NodeConnectionType.AiLanguageModel;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { messages, options } }],
|
|
]);
|
|
|
|
try {
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [
|
|
messages,
|
|
{ ...options, signal: executeFunctions.getExecutionCancelSignal() },
|
|
runManager,
|
|
],
|
|
})) as ChatResult;
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
} catch (error) {
|
|
// Mute AbortError as they are expected
|
|
if (error?.name === 'AbortError') return { generations: [] };
|
|
throw error;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== BaseOutputParser ==========
|
|
if (originalInstance instanceof BaseOutputParser) {
|
|
if (prop === 'getFormatInstructions' && 'getFormatInstructions' in target) {
|
|
return (options?: FormatInstructionsOptions): string => {
|
|
connectionType = NodeConnectionType.AiOutputParser;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'getFormatInstructions' } }],
|
|
]);
|
|
|
|
// @ts-ignore
|
|
const response = callMethodSync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [options],
|
|
}) as string;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { action: 'getFormatInstructions', response } }],
|
|
]);
|
|
return response;
|
|
};
|
|
} else if (prop === 'parse' && 'parse' in target) {
|
|
return async (text: string | Record<string, unknown>): Promise<unknown> => {
|
|
connectionType = NodeConnectionType.AiOutputParser;
|
|
const stringifiedText = isObject(text) ? JSON.stringify(text) : text;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { action: 'parse', text: stringifiedText } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [stringifiedText],
|
|
})) as object;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { action: 'parse', response } }],
|
|
]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== BaseRetriever ==========
|
|
if (originalInstance instanceof BaseRetriever) {
|
|
if (prop === 'getRelevantDocuments' && 'getRelevantDocuments' in target) {
|
|
return async (
|
|
query: string,
|
|
config?: Callbacks | BaseCallbackConfig,
|
|
): Promise<Document[]> => {
|
|
connectionType = NodeConnectionType.AiRetriever;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { query, config } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [query, config],
|
|
})) as Array<Document<Record<string, any>>>;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== Embeddings ==========
|
|
if (originalInstance instanceof Embeddings) {
|
|
// Docs -> Embeddings
|
|
if (prop === 'embedDocuments' && 'embedDocuments' in target) {
|
|
return async (documents: string[]): Promise<number[][]> => {
|
|
connectionType = NodeConnectionType.AiEmbedding;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { documents } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [documents],
|
|
})) as number[][];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
// Query -> Embeddings
|
|
if (prop === 'embedQuery' && 'embedQuery' in target) {
|
|
return async (query: string): Promise<number[]> => {
|
|
connectionType = NodeConnectionType.AiEmbedding;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { query } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [query],
|
|
})) as number[];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== N8n Loaders Process All ==========
|
|
if (
|
|
originalInstance instanceof N8nJsonLoader ||
|
|
originalInstance instanceof N8nBinaryLoader
|
|
) {
|
|
// Process All
|
|
if (prop === 'processAll' && 'processAll' in target) {
|
|
return async (items: INodeExecutionData[]): Promise<number[]> => {
|
|
connectionType = NodeConnectionType.AiDocument;
|
|
const { index } = executeFunctions.addInputData(connectionType, [items]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [items],
|
|
})) as number[];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
// Process Each
|
|
if (prop === 'processItem' && 'processItem' in target) {
|
|
return async (item: INodeExecutionData, itemIndex: number): Promise<number[]> => {
|
|
connectionType = NodeConnectionType.AiDocument;
|
|
const { index } = executeFunctions.addInputData(connectionType, [[item]]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [item, itemIndex],
|
|
})) as number[];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [
|
|
[{ json: { response }, pairedItem: { item: itemIndex } }],
|
|
]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== TextSplitter ==========
|
|
if (originalInstance instanceof TextSplitter) {
|
|
if (prop === 'splitText' && 'splitText' in target) {
|
|
return async (text: string): Promise<string[]> => {
|
|
connectionType = NodeConnectionType.AiTextSplitter;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { textSplitter: text } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [text],
|
|
})) as string[];
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== Tool ==========
|
|
if (originalInstance instanceof Tool) {
|
|
if (prop === '_call' && '_call' in target) {
|
|
return async (query: string): Promise<string> => {
|
|
connectionType = NodeConnectionType.AiTool;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { query } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [query],
|
|
})) as string;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
// ========== VectorStore ==========
|
|
if (originalInstance instanceof VectorStore) {
|
|
if (prop === 'similaritySearch' && 'similaritySearch' in target) {
|
|
return async (
|
|
query: string,
|
|
k?: number,
|
|
// @ts-ignore
|
|
filter?: BiquadFilterType | undefined,
|
|
_callbacks?: Callbacks | undefined,
|
|
): Promise<Document[]> => {
|
|
connectionType = NodeConnectionType.AiVectorStore;
|
|
const { index } = executeFunctions.addInputData(connectionType, [
|
|
[{ json: { query, k, filter } }],
|
|
]);
|
|
|
|
const response = (await callMethodAsync.call(target, {
|
|
executeFunctions,
|
|
connectionType,
|
|
currentNodeRunIndex: index,
|
|
method: target[prop],
|
|
arguments: [query, k, filter, _callbacks],
|
|
})) as Array<Document<Record<string, any>>>;
|
|
|
|
executeFunctions.addOutputData(connectionType, index, [[{ json: { response } }]]);
|
|
|
|
return response;
|
|
};
|
|
}
|
|
}
|
|
|
|
return (target as any)[prop];
|
|
},
|
|
});
|
|
}
|