n8n/packages/@n8n/nodes-langchain/nodes/embeddings/EmbeddingsHuggingFaceInference/EmbeddingsHuggingFaceInference.node.ts
oleg 0f7ae3f50a
refactor: Update Langchain to 0.1.41 & add support for Claude 3 (#8825)
Signed-off-by: Oleg Ivaniv <me@olegivaniv.com>
Co-authored-by: Michael Kret <michael.k@radency.com>
2024-03-07 11:36:36 +01:00

105 lines
3 KiB
TypeScript

/* eslint-disable n8n-nodes-base/node-dirname-against-convention */
import {
NodeConnectionType,
type IExecuteFunctions,
type INodeType,
type INodeTypeDescription,
type SupplyData,
} from 'n8n-workflow';
import { HuggingFaceInferenceEmbeddings } from '@langchain/community/embeddings/hf';
import { logWrapper } from '../../../utils/logWrapper';
import { getConnectionHintNoticeField } from '../../../utils/sharedFields';
export class EmbeddingsHuggingFaceInference implements INodeType {
description: INodeTypeDescription = {
displayName: 'Embeddings Hugging Face Inference',
name: 'embeddingsHuggingFaceInference',
icon: 'file:huggingface.svg',
group: ['transform'],
version: 1,
description: 'Use HuggingFace Inference Embeddings',
defaults: {
name: 'Embeddings HuggingFace Inference',
},
credentials: [
{
name: 'huggingFaceApi',
required: true,
},
],
codex: {
categories: ['AI'],
subcategories: {
AI: ['Embeddings'],
},
resources: {
primaryDocumentation: [
{
url: 'https://docs.n8n.io/integrations/builtin/cluster-nodes/sub-nodes/n8n-nodes-langchain.embeddingshuggingfaceinference/',
},
],
},
},
// eslint-disable-next-line n8n-nodes-base/node-class-description-inputs-wrong-regular-node
inputs: [],
// eslint-disable-next-line n8n-nodes-base/node-class-description-outputs-wrong
outputs: [NodeConnectionType.AiEmbedding],
outputNames: ['Embeddings'],
properties: [
getConnectionHintNoticeField([NodeConnectionType.AiVectorStore]),
{
displayName:
'Each model is using different dimensional density for embeddings. Please make sure to use the same dimensionality for your vector store. The default model is using 768-dimensional embeddings.',
name: 'notice',
type: 'notice',
default: '',
},
{
displayName: 'Model Name',
name: 'modelName',
type: 'string',
default: 'sentence-transformers/distilbert-base-nli-mean-tokens',
description: 'The model name to use from HuggingFace library',
},
{
displayName: 'Options',
name: 'options',
placeholder: 'Add Option',
description: 'Additional options to add',
type: 'collection',
default: {},
options: [
{
displayName: 'Custom Inference Endpoint',
name: 'endpointUrl',
default: '',
description: 'Custom endpoint URL',
type: 'string',
},
],
},
],
};
async supplyData(this: IExecuteFunctions, itemIndex: number): Promise<SupplyData> {
this.logger.verbose('Supply data for embeddings HF Inference');
const model = this.getNodeParameter(
'modelName',
itemIndex,
'sentence-transformers/distilbert-base-nli-mean-tokens',
) as string;
const credentials = await this.getCredentials('huggingFaceApi');
const options = this.getNodeParameter('options', itemIndex, {}) as object;
const embeddings = new HuggingFaceInferenceEmbeddings({
apiKey: credentials.apiKey as string,
model,
...options,
});
return {
response: logWrapper(embeddings, this),
};
}
}