Add timex collector (#664)

This collector is based on adjtimex(2) system call.  The collector returns
three values, status if time is synchronised, offset to remote reference,
and local clock frequency adjustment.

Values are taken from kernel time keeping data structures to avoid getting
involved how the synchronisation is implemented.  By that I mean one should
not care if time is update using ntpd, systemd.timesyncd, ptpd, and so on.
Since all time sync implementation will always end up telling to kernel what
is the status with time one can simply omit the software in between, and
look results of the syncing.  As a positive side effect this makes collector
very quick and conceptually specific, this does not monitor availability of
NTP server, or network in between, or dns resolution, and other unrelated
but necessary things.

Minimum set of values to keep eye on are the following three:

    The node_timex_sync_status tells if local clock is in sync with a remote
    clock.  Value is set to zero when synchronisation to a reliable server
    is lost, or a time sync software is misconfigured.

    The node_timex_offset_seconds tells how much local clock is off when
    compared to reference.  In case of multiple time references this value
    is outcome of RFC 5905 adjustment algorithm.  Ideally offset should be
    close to zero, and it depends about use case how large value is
    acceptable.  For example a typical web server is probably fine if offset
    is about 0.1 or less, but that would not be good enough for mobile phone
    base station operator.

    The node_timex_freq tells amount of adjustment to local clock tick
    frequency.  For example if offset is one second and growing the local
    clock will need instruction to tick quicker.  Number value itself is not
    very important, and occasional small adjustments are fine.  When
    frequency is unusually in stable one can assume quality of time stamps
    will not be accurate to very far in sub second range.  Obviously
    explaining why local clock frequency behaves like a passenger in roller
    coaster is different matter.  Explanations can vary from system load, to
    environmental issues such as a machine being physically too hot.

Rest of the measurements can help when debugging.  If you run a clock server
do probably want to collect and keep track of everything.

Pull-request: https://github.com/prometheus/node_exporter/pull/664
This commit is contained in:
Sami Kerola 2017-09-19 15:54:06 +01:00 committed by Ben Kochie
parent c169b4b1c5
commit 3762191e66
3 changed files with 197 additions and 1 deletions

View file

@ -44,6 +44,7 @@ sockstat | Exposes various statistics from `/proc/net/sockstat`. | Linux
stat | Exposes various statistics from `/proc/stat`. This includes boot time, forks and interrupts. | Linux
textfile | Exposes statistics read from local disk. The `--collector.textfile.directory` flag must be set. | _any_
time | Exposes the current system time. | _any_
timex | Exposes selected adjtimex(2) system call stats. | Linux
uname | Exposes system information as provided by the uname system call. | Linux
vmstat | Exposes statistics from `/proc/vmstat`. | Linux
wifi | Exposes WiFi device and station statistics. | Linux

195
collector/timex.go Normal file
View file

@ -0,0 +1,195 @@
// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build linux
// +build !notimex
package collector
// #include <sys/timex.h>
import "C"
import (
"fmt"
"syscall"
"github.com/prometheus/client_golang/prometheus"
)
const (
// The system clock is not synchronized to a reliable server.
timeError = C.TIME_ERROR
// The timex.Status time resolution bit, 0 = microsecond, 1 = nanoseconds.
staNano = C.STA_NANO
// 1 second in
nanoSeconds = 1000000000
microSeconds = 1000000
)
type timexCollector struct {
offset,
freq,
maxerror,
esterror,
status,
constant,
tick,
ppsfreq,
jitter,
shift,
stabil,
jitcnt,
calcnt,
errcnt,
stbcnt,
tai,
syncStatus typedDesc
}
func init() {
Factories["timex"] = NewTimexCollector
}
// NewTimexCollector returns a new Collector exposing adjtime(3) stats.
func NewTimexCollector() (Collector, error) {
const subsystem = "timex"
return &timexCollector{
offset: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "offset_seconds"),
"Time offset in between local system and reference clock.",
nil, nil,
), prometheus.GaugeValue},
freq: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "frequency_adjustment"),
"Local clock frequency adjustment.",
nil, nil,
), prometheus.GaugeValue},
maxerror: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "maxerror_seconds"),
"Maximum error in seconds.",
nil, nil,
), prometheus.GaugeValue},
esterror: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "estimated_error_seconds"),
"Estimated error in seconds.",
nil, nil,
), prometheus.GaugeValue},
status: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "status"),
"Value of the status array bits.",
nil, nil,
), prometheus.GaugeValue},
constant: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "loop_time_constant"),
"Phase-locked loop time constant.",
nil, nil,
), prometheus.GaugeValue},
tick: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "tick_seconds"),
"Seconds between clock ticks.",
nil, nil,
), prometheus.GaugeValue},
ppsfreq: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_frequency"),
"Pulse per second frequency.",
nil, nil,
), prometheus.GaugeValue},
jitter: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_jitter_seconds"),
"Pulse per second jitter.",
nil, nil,
), prometheus.GaugeValue},
shift: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_shift_seconds"),
"Pulse per second interval duration.",
nil, nil,
), prometheus.GaugeValue},
stabil: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_stability"),
"Pulse per second stability.",
nil, nil,
), prometheus.CounterValue},
jitcnt: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_jitter_count"),
"Pulse per second count of jitter limit exceeded events.",
nil, nil,
), prometheus.CounterValue},
calcnt: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_calibration_count"),
"Pulse per second count of calibration intervals.",
nil, nil,
), prometheus.CounterValue},
errcnt: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_error_count"),
"Pulse per second count of calibration errors.",
nil, nil,
), prometheus.CounterValue},
stbcnt: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "pps_stability_exceeded_count"),
"Pulse per second count of stability limit exceeded events.",
nil, nil,
), prometheus.GaugeValue},
tai: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "tai_offset"),
"International Atomic Time (TAI) offset.",
nil, nil,
), prometheus.GaugeValue},
syncStatus: typedDesc{prometheus.NewDesc(
prometheus.BuildFQName(Namespace, subsystem, "sync_status"),
"Is clock synchronized to a reliable server (1 = yes, 0 = no).",
nil, nil,
), prometheus.GaugeValue},
}, nil
}
func (c *timexCollector) Update(ch chan<- prometheus.Metric) error {
var syncStatus float64
var divisor float64
var timex = new(syscall.Timex)
status, err := syscall.Adjtimex(timex)
if err != nil {
return fmt.Errorf("failed to retrieve adjtimex stats: %v", err)
}
if status == timeError {
syncStatus = 0
} else {
syncStatus = 1
}
if (timex.Status & staNano) != 0 {
divisor = nanoSeconds
} else {
divisor = microSeconds
}
ch <- c.syncStatus.mustNewConstMetric(syncStatus)
ch <- c.offset.mustNewConstMetric(float64(timex.Offset) / divisor)
ch <- c.freq.mustNewConstMetric(float64(timex.Freq))
ch <- c.maxerror.mustNewConstMetric(float64(timex.Maxerror) / microSeconds)
ch <- c.esterror.mustNewConstMetric(float64(timex.Esterror) / microSeconds)
ch <- c.status.mustNewConstMetric(float64(timex.Status))
ch <- c.constant.mustNewConstMetric(float64(timex.Constant))
ch <- c.tick.mustNewConstMetric(float64(timex.Tick) / microSeconds)
ch <- c.ppsfreq.mustNewConstMetric(float64(timex.Ppsfreq))
ch <- c.jitter.mustNewConstMetric(float64(timex.Jitter) / divisor)
ch <- c.shift.mustNewConstMetric(float64(timex.Shift))
ch <- c.stabil.mustNewConstMetric(float64(timex.Stabil))
ch <- c.jitcnt.mustNewConstMetric(float64(timex.Jitcnt))
ch <- c.calcnt.mustNewConstMetric(float64(timex.Calcnt))
ch <- c.errcnt.mustNewConstMetric(float64(timex.Errcnt))
ch <- c.stbcnt.mustNewConstMetric(float64(timex.Stbcnt))
ch <- c.tai.mustNewConstMetric(float64(timex.Tai))
return nil
}

View file

@ -31,7 +31,7 @@ import (
)
const (
defaultCollectors = "arp,bcache,conntrack,cpu,diskstats,entropy,edac,exec,filefd,filesystem,hwmon,infiniband,ipvs,loadavg,mdadm,meminfo,netdev,netstat,sockstat,stat,textfile,time,uname,vmstat,wifi,xfs,zfs"
defaultCollectors = "arp,bcache,conntrack,cpu,diskstats,entropy,edac,exec,filefd,filesystem,hwmon,infiniband,ipvs,loadavg,mdadm,meminfo,netdev,netstat,sockstat,stat,textfile,time,timex,uname,vmstat,wifi,xfs,zfs"
)
var (