mirror of
https://github.com/prometheus/prometheus.git
synced 2024-12-31 16:37:26 -08:00
181 lines
3.9 KiB
Go
181 lines
3.9 KiB
Go
|
// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described
|
||
|
// at http://cyan4973.github.io/xxHash/.
|
||
|
package xxhash
|
||
|
|
||
|
import (
|
||
|
"encoding/binary"
|
||
|
"hash"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
prime1 uint64 = 11400714785074694791
|
||
|
prime2 uint64 = 14029467366897019727
|
||
|
prime3 uint64 = 1609587929392839161
|
||
|
prime4 uint64 = 9650029242287828579
|
||
|
prime5 uint64 = 2870177450012600261
|
||
|
)
|
||
|
|
||
|
// NOTE(caleb): I'm using both consts and vars of the primes. Using consts where
|
||
|
// possible in the Go code is worth a small (but measurable) performance boost
|
||
|
// by avoiding some MOVQs. Vars are needed for the asm and also are useful for
|
||
|
// convenience in the Go code in a few places where we need to intentionally
|
||
|
// avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the
|
||
|
// result overflows a uint64).
|
||
|
var (
|
||
|
prime1v = prime1
|
||
|
prime2v = prime2
|
||
|
prime3v = prime3
|
||
|
prime4v = prime4
|
||
|
prime5v = prime5
|
||
|
)
|
||
|
|
||
|
type xxh struct {
|
||
|
v1 uint64
|
||
|
v2 uint64
|
||
|
v3 uint64
|
||
|
v4 uint64
|
||
|
total int
|
||
|
mem [32]byte
|
||
|
n int // how much of mem is used
|
||
|
}
|
||
|
|
||
|
// New creates a new hash.Hash64 that implements the 64-bit xxHash algorithm.
|
||
|
func New() hash.Hash64 {
|
||
|
var x xxh
|
||
|
x.Reset()
|
||
|
return &x
|
||
|
}
|
||
|
|
||
|
func (x *xxh) Reset() {
|
||
|
x.n = 0
|
||
|
x.total = 0
|
||
|
x.v1 = prime1v + prime2
|
||
|
x.v2 = prime2
|
||
|
x.v3 = 0
|
||
|
x.v4 = -prime1v
|
||
|
}
|
||
|
|
||
|
func (x *xxh) Size() int { return 8 }
|
||
|
func (x *xxh) BlockSize() int { return 32 }
|
||
|
|
||
|
// Write adds more data to x. It always returns len(b), nil.
|
||
|
func (x *xxh) Write(b []byte) (n int, err error) {
|
||
|
n = len(b)
|
||
|
x.total += len(b)
|
||
|
|
||
|
if x.n+len(b) < 32 {
|
||
|
// This new data doesn't even fill the current block.
|
||
|
copy(x.mem[x.n:], b)
|
||
|
x.n += len(b)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if x.n > 0 {
|
||
|
// Finish off the partial block.
|
||
|
copy(x.mem[x.n:], b)
|
||
|
x.v1 = round(x.v1, u64(x.mem[0:8]))
|
||
|
x.v2 = round(x.v2, u64(x.mem[8:16]))
|
||
|
x.v3 = round(x.v3, u64(x.mem[16:24]))
|
||
|
x.v4 = round(x.v4, u64(x.mem[24:32]))
|
||
|
b = b[32-x.n:]
|
||
|
x.n = 0
|
||
|
}
|
||
|
|
||
|
if len(b) >= 32 {
|
||
|
// One or more full blocks left.
|
||
|
b = writeBlocks(x, b)
|
||
|
}
|
||
|
|
||
|
// Store any remaining partial block.
|
||
|
copy(x.mem[:], b)
|
||
|
x.n = len(b)
|
||
|
|
||
|
return
|
||
|
}
|
||
|
|
||
|
func (x *xxh) Sum(b []byte) []byte {
|
||
|
s := x.Sum64()
|
||
|
return append(
|
||
|
b,
|
||
|
byte(s>>56),
|
||
|
byte(s>>48),
|
||
|
byte(s>>40),
|
||
|
byte(s>>32),
|
||
|
byte(s>>24),
|
||
|
byte(s>>16),
|
||
|
byte(s>>8),
|
||
|
byte(s),
|
||
|
)
|
||
|
}
|
||
|
|
||
|
func (x *xxh) Sum64() uint64 {
|
||
|
var h uint64
|
||
|
|
||
|
if x.total >= 32 {
|
||
|
v1, v2, v3, v4 := x.v1, x.v2, x.v3, x.v4
|
||
|
h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4)
|
||
|
h = mergeRound(h, v1)
|
||
|
h = mergeRound(h, v2)
|
||
|
h = mergeRound(h, v3)
|
||
|
h = mergeRound(h, v4)
|
||
|
} else {
|
||
|
h = x.v3 + prime5
|
||
|
}
|
||
|
|
||
|
h += uint64(x.total)
|
||
|
|
||
|
i, end := 0, x.n
|
||
|
for ; i+8 <= end; i += 8 {
|
||
|
k1 := round(0, u64(x.mem[i:i+8]))
|
||
|
h ^= k1
|
||
|
h = rol27(h)*prime1 + prime4
|
||
|
}
|
||
|
if i+4 <= end {
|
||
|
h ^= uint64(u32(x.mem[i:i+4])) * prime1
|
||
|
h = rol23(h)*prime2 + prime3
|
||
|
i += 4
|
||
|
}
|
||
|
for i < end {
|
||
|
h ^= uint64(x.mem[i]) * prime5
|
||
|
h = rol11(h) * prime1
|
||
|
i++
|
||
|
}
|
||
|
|
||
|
h ^= h >> 33
|
||
|
h *= prime2
|
||
|
h ^= h >> 29
|
||
|
h *= prime3
|
||
|
h ^= h >> 32
|
||
|
|
||
|
return h
|
||
|
}
|
||
|
|
||
|
func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) }
|
||
|
func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) }
|
||
|
|
||
|
func round(acc, input uint64) uint64 {
|
||
|
acc += input * prime2
|
||
|
acc = rol31(acc)
|
||
|
acc *= prime1
|
||
|
return acc
|
||
|
}
|
||
|
|
||
|
func mergeRound(acc, val uint64) uint64 {
|
||
|
val = round(0, val)
|
||
|
acc ^= val
|
||
|
acc = acc*prime1 + prime4
|
||
|
return acc
|
||
|
}
|
||
|
|
||
|
// It's important for performance to get the rotates to actually compile to
|
||
|
// ROLQs. gc will do this for us but only if rotate amount is a constant.
|
||
|
|
||
|
func rol1(x uint64) uint64 { return (x << 1) | (x >> (64 - 1)) }
|
||
|
func rol7(x uint64) uint64 { return (x << 7) | (x >> (64 - 7)) }
|
||
|
func rol11(x uint64) uint64 { return (x << 11) | (x >> (64 - 11)) }
|
||
|
func rol12(x uint64) uint64 { return (x << 12) | (x >> (64 - 12)) }
|
||
|
func rol18(x uint64) uint64 { return (x << 18) | (x >> (64 - 18)) }
|
||
|
func rol23(x uint64) uint64 { return (x << 23) | (x >> (64 - 23)) }
|
||
|
func rol27(x uint64) uint64 { return (x << 27) | (x >> (64 - 27)) }
|
||
|
func rol31(x uint64) uint64 { return (x << 31) | (x >> (64 - 31)) }
|