prometheus/storage/metric/tiered.go

432 lines
11 KiB
Go
Raw Normal View History

2013-02-08 09:03:26 -08:00
// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"github.com/prometheus/prometheus/model"
"github.com/prometheus/prometheus/storage"
"sync"
"time"
)
// tieredStorage both persists samples and generates materialized views for
// queries.
type tieredStorage struct {
appendToDiskQueue chan model.Sample
appendToMemoryQueue chan model.Sample
diskStorage *LevelDBMetricPersistence
flushMemoryInterval time.Duration
memoryArena memorySeriesStorage
memoryTTL time.Duration
mutex sync.Mutex
viewQueue chan viewJob
writeMemoryInterval time.Duration
}
// viewJob encapsulates a request to extract sample values from the datastore.
type viewJob struct {
builder ViewRequestBuilder
output chan View
err chan error
}
type Storage interface {
AppendSample(model.Sample)
MakeView(ViewRequestBuilder, time.Duration) (View, error)
Serve()
Expose()
}
func NewTieredStorage(appendToMemoryQueueDepth, appendToDiskQueueDepth, viewQueueDepth uint, flushMemoryInterval, writeMemoryInterval, memoryTTL time.Duration) Storage {
diskStorage, err := NewLevelDBMetricPersistence("/tmp/metrics-foof")
if err != nil {
panic(err)
}
return &tieredStorage{
appendToDiskQueue: make(chan model.Sample, appendToDiskQueueDepth),
appendToMemoryQueue: make(chan model.Sample, appendToMemoryQueueDepth),
diskStorage: diskStorage,
flushMemoryInterval: flushMemoryInterval,
memoryArena: NewMemorySeriesStorage(),
memoryTTL: memoryTTL,
viewQueue: make(chan viewJob, viewQueueDepth),
writeMemoryInterval: writeMemoryInterval,
}
}
func (t *tieredStorage) AppendSample(s model.Sample) {
t.appendToMemoryQueue <- s
}
func (t *tieredStorage) MakeView(builder ViewRequestBuilder, deadline time.Duration) (view View, err error) {
result := make(chan View)
errChan := make(chan error)
t.viewQueue <- viewJob{
builder: builder,
output: result,
err: errChan,
}
select {
case value := <-result:
view = value
case err = <-errChan:
return
case <-time.After(deadline):
err = fmt.Errorf("MakeView timed out after %s.", deadline)
}
return
}
func (t *tieredStorage) Expose() {
ticker := time.Tick(5 * time.Second)
f := model.NewFingerprintFromRowKey("05232115763668508641-g-97-d")
for {
<-ticker
var (
first = time.Now()
second = first.Add(1 * time.Minute)
third = first.Add(2 * time.Minute)
)
vrb := NewViewRequestBuilder()
fmt.Printf("vrb -> %s\n", vrb)
vrb.GetMetricRange(f, first, second)
vrb.GetMetricRange(f, first, third)
js := vrb.ScanJobs()
consume(js[0])
// fmt.Printf("js -> %s\n", js)
// js.Represent(t.diskStorage, t.memoryArena)
// i, c, _ := t.diskStorage.metricSamples.GetIterator()
// start := time.Now()
// f, _ := newDiskFrontier(i)
// fmt.Printf("df -> %s\n", time.Since(start))
// fmt.Printf("df -- -> %s\n", f)
// start = time.Now()
// // sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("05232115763668508641-g-97-d"), *f, i)
// // sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("16879485108969112708-g-184-s"), *f, i)
// sf, _ := newSeriesFrontier(model.NewFingerprintFromRowKey("08437776163162606855-g-169-s"), *f, i)
// fmt.Printf("sf -> %s\n", time.Since(start))
// fmt.Printf("sf -- -> %s\n", sf)
// c.Close()
}
}
func (t *tieredStorage) Serve() {
var (
flushMemoryTicker = time.Tick(t.flushMemoryInterval)
writeMemoryTicker = time.Tick(t.writeMemoryInterval)
)
for {
select {
case <-writeMemoryTicker:
t.writeMemory()
case <-flushMemoryTicker:
t.flushMemory()
case viewRequest := <-t.viewQueue:
t.renderView(viewRequest)
}
}
}
func (t *tieredStorage) writeMemory() {
t.mutex.Lock()
defer t.mutex.Unlock()
pendingLength := len(t.appendToMemoryQueue)
for i := 0; i < pendingLength; i++ {
t.memoryArena.AppendSample(<-t.appendToMemoryQueue)
}
}
// Write all pending appends.
func (t *tieredStorage) flush() (err error) {
t.writeMemory()
t.flushMemory()
return
}
type memoryToDiskFlusher struct {
toDiskQueue chan model.Sample
disk MetricPersistence
olderThan time.Time
valuesAccepted int
valuesRejected int
}
type memoryToDiskFlusherVisitor struct {
stream stream
flusher *memoryToDiskFlusher
}
func (f memoryToDiskFlusherVisitor) DecodeKey(in interface{}) (out interface{}, err error) {
out = time.Time(in.(skipListTime))
return
}
func (f memoryToDiskFlusherVisitor) DecodeValue(in interface{}) (out interface{}, err error) {
out = in.(value).get()
return
}
func (f memoryToDiskFlusherVisitor) Filter(key, value interface{}) (filterResult storage.FilterResult) {
var (
recordTime = key.(time.Time)
)
if recordTime.Before(f.flusher.olderThan) {
f.flusher.valuesAccepted++
return storage.ACCEPT
}
f.flusher.valuesRejected++
return storage.STOP
}
func (f memoryToDiskFlusherVisitor) Operate(key, value interface{}) (err *storage.OperatorError) {
var (
recordTime = key.(time.Time)
recordValue = value.(model.SampleValue)
)
if len(f.flusher.toDiskQueue) == cap(f.flusher.toDiskQueue) {
f.flusher.Flush()
}
f.flusher.toDiskQueue <- model.Sample{
Metric: f.stream.metric,
Timestamp: recordTime,
Value: recordValue,
}
f.stream.values.Delete(skipListTime(recordTime))
return
}
func (f *memoryToDiskFlusher) ForStream(stream stream) (decoder storage.RecordDecoder, filter storage.RecordFilter, operator storage.RecordOperator) {
visitor := memoryToDiskFlusherVisitor{
stream: stream,
flusher: f,
}
fmt.Printf("fingerprint -> %s\n", model.NewFingerprintFromMetric(stream.metric).ToRowKey())
return visitor, visitor, visitor
}
func (f *memoryToDiskFlusher) Flush() {
length := len(f.toDiskQueue)
samples := model.Samples{}
for i := 0; i < length; i++ {
samples = append(samples, <-f.toDiskQueue)
}
fmt.Printf("%d samples to write\n", length)
f.disk.AppendSamples(samples)
}
func (f memoryToDiskFlusher) Close() {
fmt.Println("memory flusher close")
f.Flush()
}
// Persist a whole bunch of samples to the datastore.
func (t *tieredStorage) flushMemory() {
t.mutex.Lock()
defer t.mutex.Unlock()
flusher := &memoryToDiskFlusher{
disk: t.diskStorage,
olderThan: time.Now().Add(-1 * t.memoryTTL),
toDiskQueue: t.appendToDiskQueue,
}
defer flusher.Close()
v := time.Now()
t.memoryArena.ForEachSample(flusher)
fmt.Printf("Done flushing memory in %s", time.Since(v))
return
}
func (t *tieredStorage) renderView(viewJob viewJob) (err error) {
t.mutex.Lock()
defer t.mutex.Unlock()
return
}
func consume(s scanJob) {
var (
standingOperations = ops{}
lastTime = time.Time{}
)
for {
if len(s.operations) == 0 {
if len(standingOperations) > 0 {
var (
intervals = collectIntervals(standingOperations)
ranges = collectRanges(standingOperations)
)
if len(intervals) > 0 {
}
if len(ranges) > 0 {
if len(ranges) > 0 {
}
}
break
}
}
operation := s.operations[0]
if operation.StartsAt().Equal(lastTime) {
standingOperations = append(standingOperations, operation)
} else {
standingOperations = ops{operation}
lastTime = operation.StartsAt()
}
s.operations = s.operations[1:len(s.operations)]
}
}
func (s scanJobs) Represent(d *LevelDBMetricPersistence, m memorySeriesStorage) (storage *memorySeriesStorage, err error) {
if len(s) == 0 {
return
}
iterator, closer, err := d.metricSamples.GetIterator()
if err != nil {
panic(err)
return
}
defer closer.Close()
diskFrontier, err := newDiskFrontier(iterator)
if err != nil {
panic(err)
return
}
if diskFrontier == nil {
panic("diskfrontier == nil")
}
for _, job := range s {
if len(job.operations) == 0 {
panic("len(job.operations) == 0 should never occur")
}
// Determine if the metric is in the known keyspace. This is used as a
// high-level heuristic before comparing the timestamps.
var (
fingerprint = job.fingerprint
absentDiskKeyspace = fingerprint.Less(diskFrontier.firstFingerprint) || diskFrontier.lastFingerprint.Less(fingerprint)
absentMemoryKeyspace = false
)
if _, ok := m.fingerprintToSeries[fingerprint]; !ok {
absentMemoryKeyspace = true
}
var (
firstSupertime time.Time
lastSupertime time.Time
)
var (
_ = absentMemoryKeyspace
_ = firstSupertime
_ = lastSupertime
)
// If the key is present in the disk keyspace, we should find out the maximum
// seek points ahead of time. In the LevelDB case, this will save us from
// having to dispose of and recreate the iterator.
if !absentDiskKeyspace {
seriesFrontier, err := newSeriesFrontier(fingerprint, *diskFrontier, iterator)
if err != nil {
panic(err)
return nil, err
}
if seriesFrontier == nil {
panic("ouch")
}
}
}
return
}
// var (
// memoryLowWaterMark time.Time
// memoryHighWaterMark time.Time
// )
// if !absentMemoryKeyspace {
// }
// // if firstDiskFingerprint.Equal(job.fingerprint) {
// // for _, operation := range job.operations {
// // if o, ok := operation.(getMetricAtTimeOperation); ok {
// // if o.StartTime().Before(firstDiskSuperTime) {
// // }
// // }
// // if o, ok := operation.(GetMetricAtInterval); ok {
// // }
// // }
// // }
// }
// // // Compare the metrics on the basis of the keys.
// // firstSampleInRange = sort.IsSorted(model.Fingerprints{firstDiskFingerprint, s[0].fingerprint})
// // lastSampleInRange = sort.IsSorted(model.Fingerprints{s[s.Len()-1].fingerprint, lastDiskFingerprint})
// // if firstSampleInRange && firstDiskFingerprint.Equal(s[0].fingerprint) {
// // firstSampleInRange = !indexable.DecodeTime(firstKey.Timestamp).After(s.operations[0].StartTime())
// // }
// // if lastSampleInRange && lastDiskFingerprint.Equal(s[s.Len()-1].fingerprint) {
// // lastSampleInRange = !s.operations[s.Len()-1].StartTime().After(indexable.DecodeTime(lastKey.Timestamp))
// // }
// // for _, job := range s {
// // operations := job.operations
// // numberOfOperations := len(operations)
// // for j := 0; j < numberOfOperations; j++ {
// // operationTime := operations[j].StartTime()
// // group, skipAhead := collectOperationsForTime(operationTime, operations[j:numberOfOperations])
// // ranges := collectRanges(group)
// // intervals := collectIntervals(group)
// // fmt.Printf("ranges -> %s\n", ranges)
// // if len(ranges) > 0 {
// // fmt.Printf("d -> %s\n", peekForLongestRange(ranges, ranges[0].through))
// // }
// // j += skipAhead
// // }
// // }