prometheus/promql/promqltest/testdata/functions.test

1337 lines
42 KiB
Plaintext
Raw Normal View History

# Testdata for resets() and changes().
load 5m
http_requests{path="/foo"} 1 2 3 0 1 0 0 1 2 0
http_requests{path="/bar"} 1 2 3 4 5 1 2 3 4 5
http_requests{path="/biz"} 0 0 0 0 0 1 1 1 1 1
http_requests_histogram{path="/foo"} {{schema:0 sum:1 count:1}}x9
http_requests_histogram{path="/bar"} 0 0 0 0 0 0 0 0 {{schema:0 sum:1 count:1}} {{schema:0 sum:1 count:1}}
http_requests_histogram{path="/biz"} 0 1 0 2 0 3 0 {{schema:0 sum:1 count:1}} {{schema:0 sum:2 count:2}} {{schema:0 sum:1 count:1}}
# Tests for resets().
eval instant at 50m resets(http_requests[5m])
eval instant at 50m resets(http_requests[10m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[600])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[20m])
{path="/foo"} 1
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[30m])
{path="/foo"} 1
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[32m])
{path="/foo"} 2
{path="/bar"} 1
{path="/biz"} 0
eval instant at 50m resets(http_requests[50m])
{path="/foo"} 3
{path="/bar"} 1
{path="/biz"} 0
eval instant at 50m resets(nonexistent_metric[50m])
# Tests for changes().
eval instant at 50m changes(http_requests[5m])
eval instant at 50m changes(http_requests[6m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m changes(http_requests[20m])
{path="/foo"} 2
{path="/bar"} 2
{path="/biz"} 0
eval instant at 50m changes(http_requests[30m])
{path="/foo"} 3
{path="/bar"} 4
{path="/biz"} 0
eval instant at 50m changes(http_requests[50m])
{path="/foo"} 7
{path="/bar"} 8
{path="/biz"} 1
eval instant at 50m changes((http_requests[50m]))
{path="/foo"} 7
{path="/bar"} 8
{path="/biz"} 1
eval instant at 50m changes(nonexistent_metric[50m])
# Test for mix of floats and histograms.
# Because of bug #14172 we are not able to test more complex cases like below:
# 0 1 2 {{schema:0 sum:1 count:1}} 3 {{schema:0 sum:2 count:2}} 4 {{schema:0 sum:3 count:3}}.
eval instant at 50m changes(http_requests_histogram[5m])
eval instant at 50m changes(http_requests_histogram[6m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m changes(http_requests_histogram[60m])
{path="/foo"} 0
{path="/bar"} 1
{path="/biz"} 9
clear
load 5m
x{a="b"} NaN NaN NaN
x{a="c"} 0 NaN 0
eval instant at 15m changes(x[20m])
{a="b"} 0
{a="c"} 2
clear
# Tests for increase().
load 5m
http_requests_total{path="/foo"} 0+10x10
http_requests_total{path="/bar"} 0+18x5 0+18x5
http_requests_total{path="/dings"} 10+10x10
http_requests_total{path="/bumms"} 1+10x10
# Tests for increase().
eval instant at 50m increase(http_requests_total[50m])
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
{path="/foo"} 100
{path="/bar"} 160
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
{path="/dings"} 100
{path="/bumms"} 100
# "foo" and "bar" are already at value 0 at t=0, so no extrapolation
# happens. "dings" has value 10 at t=0 and would reach 0 at t=-5m. The
# normal extrapolation by half a sample interval only goes to
# t=-2m30s, so that's not yet reaching a negative value and therefore
# chosen. However, "bumms" has value 1 at t=0 and would reach 0 at
# t=-30s. Here the extrapolation to t=-2m30s would reach a negative
# value, and therefore the extrapolation happens only by 30s.
eval instant at 50m increase(http_requests_total[100m])
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
{path="/foo"} 100
{path="/bar"} 162
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
{path="/dings"} 105
{path="/bumms"} 101
clear
# Test for increase() with counter reset.
# When the counter is reset, it always starts at 0.
# So the sequence 3 2 (decreasing counter = reset) is interpreted the same as 3 0 1 2.
# Prometheus assumes it missed the intermediate values 0 and 1.
load 5m
http_requests_total{path="/foo"} 0 1 2 3 2 3 4
eval instant at 30m increase(http_requests_total[30m])
{path="/foo"} 7
clear
# Tests for rate().
load 5m
testcounter_reset_middle_total 0+27x4 0+27x5
testcounter_reset_end_total 0+10x9 0 10
# Counter resets at in the middle of range are handled correctly by rate().
eval instant at 50m rate(testcounter_reset_middle_total[50m])
{} 0.08
# Counter resets at end of range are ignored by rate().
eval instant at 50m rate(testcounter_reset_end_total[5m])
eval instant at 50m rate(testcounter_reset_end_total[6m])
{} 0
clear
load 5m
calculate_rate_offset_total{x="a"} 0+10x10
calculate_rate_offset_total{x="b"} 0+20x10
calculate_rate_window_total 0+80x10
# Rates should calculate per-second rates.
eval instant at 50m rate(calculate_rate_window_total[50m])
{} 0.26666666666666666
eval instant at 50m rate(calculate_rate_offset_total[10m] offset 5m)
{x="a"} 0.03333333333333333
{x="b"} 0.06666666666666667
clear
load 4m
testcounter_zero_cutoff_total{start="0m"} 0+240x10
testcounter_zero_cutoff_total{start="1m"} 60+240x10
testcounter_zero_cutoff_total{start="2m"} 120+240x10
testcounter_zero_cutoff_total{start="3m"} 180+240x10
testcounter_zero_cutoff_total{start="4m"} 240+240x10
testcounter_zero_cutoff_total{start="5m"} 300+240x10
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
# Zero cutoff for left-side extrapolation happens until we
# reach half a sampling interval (2m). Beyond that, we only
# extrapolate by half a sampling interval.
eval instant at 10m rate(testcounter_zero_cutoff_total[20m])
{start="0m"} 0.5
{start="1m"} 0.55
{start="2m"} 0.6
promql: Fix limiting of extrapolation to negative values This is a bit tough to explain, but I'll try: `rate` & friends have a sophisticated extrapolation algorithm. Usually, we extrapolate the result to the total interval specified in the range selector. However, if the first sample within the range is too far away from the beginning of the interval, or if the last sample within the range is too far away from the end of the interval, we assume the series has just started half a sampling interval before the first sample or after the last sample, respectively, and shorten the extrapolation interval correspondingly. We calculate the sampling interval by looking at the average time between samples within the range, and we define "too far away" as "more than 110% of that sampling interval". However, if this algorithm leads to an extrapolated starting value that is negative, we limit the start of the extrapolation interval to the point where the extrapolated starting value is zero. At least that was the intention. What we actually implemented is the following: If extrapolating all the way to the beginning of the total interval would lead to an extrapolated negative value, we would only extrapolate to the zero point as above, even if the algorithm above would have selected a starting point that is just half a sampling interval before the first sample and that starting point would not have an extrapolated negative value. In other word: What was meant as a _limitation_ of the extrapolation interval yielded a _longer_ extrapolation interval in this case. There is an exception to the case just described: If the increase of the extrapolation interval is more than 110% of the sampling interval, we suddenly drop back to only extrapolate to half a sampling interval. This behavior can be nicely seen in the testcounter_zero_cutoff test, where the rate goes up all the way to 0.7 and then jumps back to 0.6. This commit changes the behavior to what was (presumably) intended from the beginning: The extension of the extrapolation interval is only limited if actually needed to prevent extrapolation to negative values, but the "limitation" never leads to _more_ extrapolation anymore. The difference is subtle, and probably it never bothered anyone. However, if you calculate a rate of a classic histograms, the old behavior might create non-monotonic histograms as a result (because of the jumps you can see nicely in the old version of the testcounter_zero_cutoff test). With this fix, that doesn't happen anymore. Signed-off-by: beorn7 <beorn@grafana.com>
2024-03-06 15:55:28 -08:00
{start="3m"} 0.6
{start="4m"} 0.6
{start="5m"} 0.6
# Normal half-interval cutoff for left-side extrapolation.
eval instant at 50m rate(testcounter_zero_cutoff_total[20m])
{start="0m"} 0.6
{start="1m"} 0.6
{start="2m"} 0.6
{start="3m"} 0.6
{start="4m"} 0.6
{start="5m"} 0.6
clear
# Tests for irate().
load 5m
http_requests_total{path="/foo"} 0+10x10
http_requests_total{path="/bar"} 0+10x5 0+10x5
eval instant at 50m irate(http_requests_total[50m])
{path="/foo"} .03333333333333333333
{path="/bar"} .03333333333333333333
# Counter reset.
eval instant at 30m irate(http_requests_total[50m])
{path="/foo"} .03333333333333333333
{path="/bar"} 0
clear
2016-08-08 01:02:58 -07:00
# Tests for delta().
load 5m
http_requests{path="/foo"} 0 50 100 150 200
http_requests{path="/bar"} 200 150 100 50 0
2016-08-08 01:02:58 -07:00
eval instant at 20m delta(http_requests[20m])
{path="/foo"} 200
{path="/bar"} -200
clear
# Tests for idelta().
load 5m
http_requests{path="/foo"} 0 50 100 150
http_requests{path="/bar"} 0 50 100 50
eval instant at 20m idelta(http_requests[20m])
{path="/foo"} 50
{path="/bar"} -50
2016-08-08 01:02:58 -07:00
clear
# Tests for deriv() and predict_linear().
load 5m
testcounter_reset_middle_total 0+10x4 0+10x5
http_requests_total{job="app-server", instance="1", group="canary"} 0+80x10
# deriv should return the same as rate in simple cases.
eval instant at 50m rate(http_requests_total{group="canary", instance="1", job="app-server"}[50m])
{group="canary", instance="1", job="app-server"} 0.26666666666666666
eval instant at 50m deriv(http_requests_total{group="canary", instance="1", job="app-server"}[50m])
{group="canary", instance="1", job="app-server"} 0.26666666666666666
# deriv should return correct result.
eval instant at 50m deriv(testcounter_reset_middle_total[100m])
{} 0.010606060606060607
# predict_linear should return correct result.
# X/s = [ 0, 300, 600, 900,1200,1500,1800,2100,2400,2700,3000]
# Y = [ 0, 10, 20, 30, 40, 0, 10, 20, 30, 40, 50]
# sumX = 16500
# sumY = 250
# sumXY = 480000
# sumX2 = 34650000
# n = 11
# covXY = 105000
# varX = 9900000
# slope = 0.010606060606060607
# intercept at t=0: 6.818181818181818
# intercept at t=3000: 38.63636363636364
# intercept at t=3000+3600: 76.81818181818181
eval instant at 50m predict_linear(testcounter_reset_middle_total[50m], 3600)
{} 70
eval instant at 50m predict_linear(testcounter_reset_middle_total[50m], 1h)
{} 70
# intercept at t = 3000+3600 = 6600
eval instant at 50m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 76.81818181818181
eval instant at 50m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 1h)
{} 76.81818181818181
# intercept at t = 600+3600 = 4200
eval instant at 10m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 51.36363636363637
# intercept at t = 4200+3600 = 7800
eval instant at 70m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 89.54545454545455
# With http_requests_total, there is a sample value exactly at the end of
# the range, and it has exactly the predicted value, so predict_linear
# can be emulated with deriv.
eval instant at 50m predict_linear(http_requests_total[50m], 3600) - (http_requests_total + deriv(http_requests_total[50m]) * 3600)
{group="canary", instance="1", job="app-server"} 0
clear
# Tests for label_replace.
load 5m
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace does a full-string match and replace.
eval instant at 0m label_replace(testmetric, "dst", "destination-value-$1", "src", "source-value-(.*)")
testmetric{src="source-value-10",dst="destination-value-10"} 0
testmetric{src="source-value-20",dst="destination-value-20"} 1
# label_replace does not do a sub-string match.
eval instant at 0m label_replace(testmetric, "dst", "destination-value-$1", "src", "value-(.*)")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace works with multiple capture groups.
eval instant at 0m label_replace(testmetric, "dst", "$1-value-$2", "src", "(.*)-value-(.*)")
testmetric{src="source-value-10",dst="source-value-10"} 0
testmetric{src="source-value-20",dst="source-value-20"} 1
# label_replace does not overwrite the destination label if the source label
# does not exist.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "nonexistent-src", "source-value-(.*)")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace overwrites the destination label if the source label is empty,
# but matched.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "nonexistent-src", "(.*)")
testmetric{src="source-value-10",dst="value-"} 0
testmetric{src="source-value-20",dst="value-"} 1
# label_replace does not overwrite the destination label if the source label
# is not matched.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "src", "non-matching-regex")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
eval instant at 0m label_replace((((testmetric))), (("dst")), (("value-$1")), (("src")), (("non-matching-regex")))
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace drops labels that are set to empty values.
eval instant at 0m label_replace(testmetric, "dst", "", "dst", ".*")
testmetric{src="source-value-10"} 0
testmetric{src="source-value-20"} 1
# label_replace fails when the regex is invalid.
eval_fail instant at 0m label_replace(testmetric, "dst", "value-$1", "src", "(.*")
# label_replace fails when the destination label name is not a valid Prometheus label name.
eval_fail instant at 0m label_replace(testmetric, "invalid-label-name", "", "src", "(.*)")
# label_replace fails when there would be duplicated identical output label sets.
eval_fail instant at 0m label_replace(testmetric, "src", "", "", "")
clear
# Tests for vector, time and timestamp.
load 10s
metric 1 1
eval instant at 0s timestamp(metric)
{} 0
eval instant at 5s timestamp(metric)
{} 0
eval instant at 5s timestamp(((metric)))
{} 0
eval instant at 10s timestamp(metric)
{} 10
eval instant at 10s timestamp(((metric)))
{} 10
# Tests for label_join.
load 5m
testmetric{src="a",src1="b",src2="c",dst="original-destination-value"} 0
testmetric{src="d",src1="e",src2="f",dst="original-destination-value"} 1
# label_join joins all src values in order.
eval instant at 0m label_join(testmetric, "dst", "-", "src", "src1", "src2")
testmetric{src="a",src1="b",src2="c",dst="a-b-c"} 0
testmetric{src="d",src1="e",src2="f",dst="d-e-f"} 1
# label_join treats non existent src labels as empty strings.
eval instant at 0m label_join(testmetric, "dst", "-", "src", "src3", "src1")
testmetric{src="a",src1="b",src2="c",dst="a--b"} 0
testmetric{src="d",src1="e",src2="f",dst="d--e"} 1
# label_join overwrites the destination label even if the resulting dst label is empty string
eval instant at 0m label_join(testmetric, "dst", "", "emptysrc", "emptysrc1", "emptysrc2")
testmetric{src="a",src1="b",src2="c"} 0
testmetric{src="d",src1="e",src2="f"} 1
# test without src label for label_join
eval instant at 0m label_join(testmetric, "dst", ", ")
testmetric{src="a",src1="b",src2="c"} 0
testmetric{src="d",src1="e",src2="f"} 1
# test without dst label for label_join
load 5m
testmetric1{src="foo",src1="bar",src2="foobar"} 0
testmetric1{src="fizz",src1="buzz",src2="fizzbuzz"} 1
# label_join creates dst label if not present.
eval instant at 0m label_join(testmetric1, "dst", ", ", "src", "src1", "src2")
testmetric1{src="foo",src1="bar",src2="foobar",dst="foo, bar, foobar"} 0
testmetric1{src="fizz",src1="buzz",src2="fizzbuzz",dst="fizz, buzz, fizzbuzz"} 1
clear
# Tests for vector.
eval instant at 0m vector(1)
{} 1
eval instant at 0s vector(time())
{} 0
eval instant at 5s vector(time())
{} 5
eval instant at 60m vector(time())
{} 3600
# Tests for clamp_max, clamp_min(), and clamp().
load 5m
test_clamp{src="clamp-a"} -50
test_clamp{src="clamp-b"} 0
test_clamp{src="clamp-c"} 100
eval instant at 0m clamp_max(test_clamp, 75)
{src="clamp-a"} -50
{src="clamp-b"} 0
{src="clamp-c"} 75
eval instant at 0m clamp_min(test_clamp, -25)
{src="clamp-a"} -25
{src="clamp-b"} 0
{src="clamp-c"} 100
eval instant at 0m clamp(test_clamp, -25, 75)
{src="clamp-a"} -25
{src="clamp-b"} 0
{src="clamp-c"} 75
eval instant at 0m clamp_max(clamp_min(test_clamp, -20), 70)
{src="clamp-a"} -20
{src="clamp-b"} 0
{src="clamp-c"} 70
2015-12-22 04:38:32 -08:00
eval instant at 0m clamp_max((clamp_min(test_clamp, (-20))), (70))
{src="clamp-a"} -20
{src="clamp-b"} 0
{src="clamp-c"} 70
eval instant at 0m clamp(test_clamp, 0, NaN)
{src="clamp-a"} NaN
{src="clamp-b"} NaN
{src="clamp-c"} NaN
eval instant at 0m clamp(test_clamp, NaN, 0)
{src="clamp-a"} NaN
{src="clamp-b"} NaN
{src="clamp-c"} NaN
eval instant at 0m clamp(test_clamp, 5, -5)
clear
load 1m
mixed_metric {{schema:0 sum:5 count:4 buckets:[1 2 1]}} 1 2 3 {{schema:0 sum:5 count:4 buckets:[1 2 1]}} {{schema:0 sum:8 count:6 buckets:[1 4 1]}}
# clamp ignores any histograms
eval range from 0 to 5m step 1m clamp(mixed_metric, 2, 5)
{} _ 2 2 3
eval range from 0 to 5m step 1m clamp_min(mixed_metric, 2)
{} _ 2 2 3
eval range from 0 to 5m step 1m clamp_max(mixed_metric, 2)
{} _ 1 2 2
# Test cases for sgn.
clear
load 5m
test_sgn{src="sgn-a"} -Inf
test_sgn{src="sgn-b"} Inf
test_sgn{src="sgn-c"} NaN
test_sgn{src="sgn-d"} -50
test_sgn{src="sgn-e"} 0
test_sgn{src="sgn-f"} 100
eval instant at 0m sgn(test_sgn)
{src="sgn-a"} -1
{src="sgn-b"} 1
{src="sgn-c"} NaN
{src="sgn-d"} -1
{src="sgn-e"} 0
{src="sgn-f"} 1
# Tests for sort/sort_desc.
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
eval_ordered instant at 50m sort(http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="2", job="api-server"} NaN
eval_ordered instant at 50m sort_desc(http_requests)
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
2016-03-09 19:29:02 -08:00
# Tests for sort_by_label/sort_by_label_desc.
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
http_requests{job="api-server", instance="2", group="production"} 0+10x10
cpu_time_total{job="cpu", cpu="0"} 0+10x10
cpu_time_total{job="cpu", cpu="1"} 0+10x10
cpu_time_total{job="cpu", cpu="2"} 0+10x10
cpu_time_total{job="cpu", cpu="3"} 0+10x10
cpu_time_total{job="cpu", cpu="10"} 0+10x10
cpu_time_total{job="cpu", cpu="11"} 0+10x10
cpu_time_total{job="cpu", cpu="12"} 0+10x10
cpu_time_total{job="cpu", cpu="20"} 0+10x10
cpu_time_total{job="cpu", cpu="21"} 0+10x10
cpu_time_total{job="cpu", cpu="100"} 0+10x10
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 0+10x10
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 0+10x10
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 0+10x10
eval_ordered instant at 50m sort_by_label(http_requests, "instance")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "group", "instance", "job")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "job", "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="app-server"} 600
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance", "group")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance", "group", "job")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label(cpu_time_total, "cpu")
cpu_time_total{job="cpu", cpu="0"} 100
cpu_time_total{job="cpu", cpu="1"} 100
cpu_time_total{job="cpu", cpu="2"} 100
cpu_time_total{job="cpu", cpu="3"} 100
cpu_time_total{job="cpu", cpu="10"} 100
cpu_time_total{job="cpu", cpu="11"} 100
cpu_time_total{job="cpu", cpu="12"} 100
cpu_time_total{job="cpu", cpu="20"} 100
cpu_time_total{job="cpu", cpu="21"} 100
cpu_time_total{job="cpu", cpu="100"} 100
eval_ordered instant at 50m sort_by_label(node_uname_info, "instance")
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 100
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 100
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 100
eval_ordered instant at 50m sort_by_label(node_uname_info, "release")
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 100
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 100
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 100
# Tests for double_exponential_smoothing
2016-03-09 19:29:02 -08:00
clear
# positive trends
load 10s
http_requests{job="api-server", instance="0", group="production"} 0+10x1000 100+30x1000
http_requests{job="api-server", instance="1", group="production"} 0+20x1000 200+30x1000
http_requests{job="api-server", instance="0", group="canary"} 0+30x1000 300+80x1000
http_requests{job="api-server", instance="1", group="canary"} 0+40x2000
eval instant at 8000s double_exponential_smoothing(http_requests[1m], 0.01, 0.1)
2016-03-09 19:29:02 -08:00
{job="api-server", instance="0", group="production"} 8000
{job="api-server", instance="1", group="production"} 16000
{job="api-server", instance="0", group="canary"} 24000
{job="api-server", instance="1", group="canary"} 32000
# negative trends
clear
load 10s
http_requests{job="api-server", instance="0", group="production"} 8000-10x1000
http_requests{job="api-server", instance="1", group="production"} 0-20x1000
http_requests{job="api-server", instance="0", group="canary"} 0+30x1000 300-80x1000
http_requests{job="api-server", instance="1", group="canary"} 0-40x1000 0+40x1000
eval instant at 8000s double_exponential_smoothing(http_requests[1m], 0.01, 0.1)
2016-03-09 19:29:02 -08:00
{job="api-server", instance="0", group="production"} 0
{job="api-server", instance="1", group="production"} -16000
{job="api-server", instance="0", group="canary"} 24000
{job="api-server", instance="1", group="canary"} -32000
# Tests for avg_over_time
clear
load 10s
metric 1 2 3 4 5
metric2 1 2 3 4 Inf
metric3 1 2 3 4 -Inf
metric4 1 2 3 Inf -Inf
metric5 Inf 0 Inf
metric5b Inf 0 Inf
metric5c Inf Inf Inf -Inf
metric6 1 2 3 -Inf -Inf
metric6b -Inf 0 -Inf
metric6c -Inf -Inf -Inf Inf
metric7 1 2 -Inf -Inf Inf
metric8 9.988465674311579e+307 9.988465674311579e+307
metric9 -9.988465674311579e+307 -9.988465674311579e+307 -9.988465674311579e+307
metric10 -9.988465674311579e+307 9.988465674311579e+307
metric11 1 2 3 NaN NaN
eval instant at 55s avg_over_time(metric[1m])
{} 3
eval instant at 55s sum_over_time(metric[1m])/count_over_time(metric[1m])
{} 3
eval instant at 1m avg_over_time(metric2[1m])
{} Inf
eval instant at 1m sum_over_time(metric2[1m])/count_over_time(metric2[1m])
{} Inf
eval instant at 1m avg_over_time(metric3[1m])
{} -Inf
eval instant at 1m sum_over_time(metric3[1m])/count_over_time(metric3[1m])
{} -Inf
eval instant at 1m avg_over_time(metric4[1m])
{} NaN
eval instant at 1m sum_over_time(metric4[1m])/count_over_time(metric4[1m])
{} NaN
eval instant at 1m avg_over_time(metric5[1m])
{} Inf
eval instant at 1m sum_over_time(metric5[1m])/count_over_time(metric5[1m])
{} Inf
eval instant at 1m avg_over_time(metric5b[1m])
{} Inf
eval instant at 1m sum_over_time(metric5b[1m])/count_over_time(metric5b[1m])
{} Inf
eval instant at 1m avg_over_time(metric5c[1m])
{} NaN
eval instant at 1m sum_over_time(metric5c[1m])/count_over_time(metric5c[1m])
{} NaN
eval instant at 1m avg_over_time(metric6[1m])
{} -Inf
eval instant at 1m sum_over_time(metric6[1m])/count_over_time(metric6[1m])
{} -Inf
eval instant at 1m avg_over_time(metric6b[1m])
{} -Inf
eval instant at 1m sum_over_time(metric6b[1m])/count_over_time(metric6b[1m])
{} -Inf
eval instant at 1m avg_over_time(metric6c[1m])
{} NaN
eval instant at 1m sum_over_time(metric6c[1m])/count_over_time(metric6c[1m])
{} NaN
eval instant at 1m avg_over_time(metric7[1m])
{} NaN
eval instant at 1m sum_over_time(metric7[1m])/count_over_time(metric7[1m])
{} NaN
eval instant at 1m avg_over_time(metric8[1m])
{} 9.988465674311579e+307
# This overflows float64.
eval instant at 1m sum_over_time(metric8[2m])/count_over_time(metric8[2m])
{} +Inf
eval instant at 1m avg_over_time(metric9[1m])
{} -9.988465674311579e+307
# This overflows float64.
eval instant at 1m sum_over_time(metric9[1m])/count_over_time(metric9[1m])
{} -Inf
eval instant at 45s avg_over_time(metric10[1m])
{} 0
eval instant at 1m avg_over_time(metric10[2m])
{} 0
eval instant at 45s sum_over_time(metric10[1m])/count_over_time(metric10[1m])
{} 0
eval instant at 1m sum_over_time(metric10[2m])/count_over_time(metric10[2m])
{} 0
# NaN behavior.
eval instant at 20s avg_over_time(metric11[1m])
{} 2
eval instant at 30s avg_over_time(metric11[1m])
{} NaN
eval instant at 1m avg_over_time(metric11[1m])
{} NaN
eval instant at 1m sum_over_time(metric11[1m])/count_over_time(metric11[1m])
{} NaN
# Test if very big intermediate values cause loss of detail.
clear
load 10s
metric 1 1e100 1 -1e100
eval instant at 1m sum_over_time(metric[2m])
{} 2
eval instant at 1m avg_over_time(metric[2m])
{} 0.5
# Tests for stddev_over_time and stdvar_over_time.
clear
load 10s
metric 0 8 8 2 3
eval instant at 1m stdvar_over_time(metric[2m])
{} 10.56
eval instant at 1m stddev_over_time(metric[2m])
{} 3.249615
2016-07-08 05:22:22 -07:00
eval instant at 1m stddev_over_time((metric[2m]))
{} 3.249615
# Tests for stddev_over_time and stdvar_over_time #4927.
clear
load 10s
metric 1.5990505637277868 1.5990505637277868 1.5990505637277868
eval instant at 1m stdvar_over_time(metric[1m])
{} 0
eval instant at 1m stddev_over_time(metric[1m])
{} 0
# Tests for mad_over_time.
clear
load 10s
metric 4 6 2 1 999 1 2
eval instant at 70s mad_over_time(metric[70s])
{} 1
2016-07-08 05:22:22 -07:00
# Tests for quantile_over_time
clear
load 10s
data{test="two samples"} 0 1
data{test="three samples"} 0 1 2
data{test="uneven samples"} 0 1 4
eval instant at 1m quantile_over_time(0, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} 0
{test="three samples"} 0
{test="uneven samples"} 0
eval instant at 1m quantile_over_time(0.5, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} 0.5
{test="three samples"} 1
{test="uneven samples"} 1
eval instant at 1m quantile_over_time(0.75, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} 0.75
{test="three samples"} 1.5
{test="uneven samples"} 2.5
eval instant at 1m quantile_over_time(0.8, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} 0.8
{test="three samples"} 1.6
{test="uneven samples"} 2.8
eval instant at 1m quantile_over_time(1, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} 1
{test="three samples"} 2
{test="uneven samples"} 4
eval_warn instant at 1m quantile_over_time(-1, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} -Inf
{test="three samples"} -Inf
{test="uneven samples"} -Inf
eval_warn instant at 1m quantile_over_time(2, data[2m])
2016-07-08 05:22:22 -07:00
{test="two samples"} +Inf
{test="three samples"} +Inf
{test="uneven samples"} +Inf
eval_warn instant at 1m (quantile_over_time(2, (data[2m])))
{test="two samples"} +Inf
{test="three samples"} +Inf
{test="uneven samples"} +Inf
clear
# Test time-related functions.
load 5m
histogram_sample {{schema:0 sum:1 count:1}}
eval instant at 0m year()
{} 1970
2018-02-08 03:39:13 -08:00
eval instant at 1ms time()
0.001
eval instant at 50m time()
3000
eval instant at 0m year(vector(1136239445))
{} 2006
eval instant at 0m month()
{} 1
eval instant at 0m month(vector(1136239445))
{} 1
eval instant at 0m day_of_month()
{} 1
eval instant at 0m day_of_month(vector(1136239445))
{} 2
eval instant at 0m day_of_year()
{} 1
eval instant at 0m day_of_year(vector(1136239445))
{} 2
# Thursday.
eval instant at 0m day_of_week()
{} 4
eval instant at 0m day_of_week(vector(1136239445))
{} 1
eval instant at 0m hour()
{} 0
eval instant at 0m hour(vector(1136239445))
{} 22
eval instant at 0m minute()
{} 0
eval instant at 0m minute(vector(1136239445))
{} 4
# 2008-12-31 23:59:59 just before leap second.
eval instant at 0m year(vector(1230767999))
{} 2008
# 2009-01-01 00:00:00 just after leap second.
eval instant at 0m year(vector(1230768000))
{} 2009
# 2016-02-29 23:59:59 February 29th in leap year.
eval instant at 0m month(vector(1456790399)) + day_of_month(vector(1456790399)) / 100
{} 2.29
# 2016-03-01 00:00:00 March 1st in leap year.
eval instant at 0m month(vector(1456790400)) + day_of_month(vector(1456790400)) / 100
{} 3.01
2016-08-22 13:08:13 -07:00
# 2016-12-31 13:37:00 366th day in leap year.
eval instant at 0m day_of_year(vector(1483191420))
{} 366
# 2022-12-31 13:37:00 365th day in non-leap year.
eval instant at 0m day_of_year(vector(1672493820))
{} 365
# February 1st 2016 in leap year.
2016-08-22 13:08:13 -07:00
eval instant at 0m days_in_month(vector(1454284800))
{} 29
# February 1st 2017 not in leap year.
2016-08-22 13:08:13 -07:00
eval instant at 0m days_in_month(vector(1485907200))
{} 28
# Test for histograms.
eval instant at 0m day_of_month(histogram_sample)
eval instant at 0m day_of_week(histogram_sample)
eval instant at 0m day_of_year(histogram_sample)
eval instant at 0m days_in_month(histogram_sample)
eval instant at 0m hour(histogram_sample)
eval instant at 0m minute(histogram_sample)
eval instant at 0m month(histogram_sample)
eval instant at 0m year(histogram_sample)
clear
# Test duplicate labelset in promql output.
load 5m
testmetric1{src="a",dst="b"} 0
testmetric2{src="a",dst="b"} 1
eval_fail instant at 0m changes({__name__=~'testmetric1|testmetric2'}[5m])
# Tests for *_over_time
clear
load 10s
data{type="numbers"} 2 0 3
data{type="some_nan"} 2 0 NaN
data{type="some_nan2"} 2 NaN 1
data{type="some_nan3"} NaN 0 1
data{type="only_nan"} NaN NaN NaN
eval instant at 1m min_over_time(data[2m])
{type="numbers"} 0
{type="some_nan"} 0
{type="some_nan2"} 1
{type="some_nan3"} 0
{type="only_nan"} NaN
eval instant at 1m max_over_time(data[2m])
{type="numbers"} 3
{type="some_nan"} 2
{type="some_nan2"} 2
{type="some_nan3"} 1
{type="only_nan"} NaN
eval instant at 1m last_over_time(data[2m])
data{type="numbers"} 3
data{type="some_nan"} NaN
data{type="some_nan2"} 1
data{type="some_nan3"} 1
data{type="only_nan"} NaN
clear
# Test for absent()
eval instant at 50m absent(nonexistent)
{} 1
eval instant at 50m absent(nonexistent{job="testjob", instance="testinstance", method=~".x"})
{instance="testinstance", job="testjob"} 1
eval instant at 50m absent(nonexistent{job="testjob",job="testjob2",foo="bar"})
{foo="bar"} 1
eval instant at 50m absent(nonexistent{job="testjob",job="testjob2",job="three",foo="bar"})
{foo="bar"} 1
eval instant at 50m absent(nonexistent{job="testjob",job=~"testjob2",foo="bar"})
{foo="bar"} 1
clear
# Don't return anything when there's something there.
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
eval instant at 50m absent(http_requests)
eval instant at 50m absent(sum(http_requests))
clear
eval instant at 50m absent(sum(nonexistent{job="testjob", instance="testinstance"}))
{} 1
eval instant at 50m absent(max(nonexistant))
{} 1
eval instant at 50m absent(nonexistant > 1)
{} 1
eval instant at 50m absent(a + b)
{} 1
eval instant at 50m absent(a and b)
{} 1
eval instant at 50m absent(rate(nonexistant[5m]))
{} 1
clear
# Testdata for absent_over_time()
eval instant at 1m absent_over_time(http_requests_total[5m])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo"}[5m])
{handler="/foo"} 1
eval instant at 1m absent_over_time(http_requests_total{handler!="/foo"}[5m])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo", handler="/bar", handler="/foobar"}[5m])
{} 1
eval instant at 1m absent_over_time(rate(nonexistant[5m])[5m:])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo", handler="/bar", instance="127.0.0.1"}[5m])
{instance="127.0.0.1"} 1
load 1m
http_requests_total{path="/foo",instance="127.0.0.1",job="httpd"} 1+1x10
http_requests_total{path="/bar",instance="127.0.0.1",job="httpd"} 1+1x10
httpd_handshake_failures_total{instance="127.0.0.1",job="node"} 1+1x15
httpd_log_lines_total{instance="127.0.0.1",job="node"} 1
ssl_certificate_expiry_seconds{job="ingress"} NaN NaN NaN NaN NaN
eval instant at 5m absent_over_time(http_requests_total[5m])
eval instant at 5m absent_over_time(rate(http_requests_total[5m])[5m:1m])
eval instant at 0m absent_over_time(httpd_log_lines_total[30s])
eval instant at 1m absent_over_time(httpd_log_lines_total[30s])
{} 1
eval instant at 15m absent_over_time(http_requests_total[5m])
{} 1
eval instant at 15m absent_over_time(http_requests_total[10m])
eval instant at 16m absent_over_time(http_requests_total[6m])
{} 1
eval instant at 16m absent_over_time(http_requests_total[16m])
eval instant at 16m absent_over_time(httpd_handshake_failures_total[1m])
{} 1
eval instant at 16m absent_over_time(httpd_handshake_failures_total[2m])
eval instant at 16m absent_over_time({instance="127.0.0.1"}[5m])
eval instant at 21m absent_over_time({instance="127.0.0.1"}[5m])
{instance="127.0.0.1"} 1
eval instant at 21m absent_over_time({instance="127.0.0.1"}[20m])
eval instant at 21m absent_over_time({job="grok"}[20m])
{job="grok"} 1
eval instant at 30m absent_over_time({instance="127.0.0.1"}[5m:5s])
{} 1
eval instant at 5m absent_over_time({job="ingress"}[4m])
eval instant at 10m absent_over_time({job="ingress"}[4m])
{job="ingress"} 1
clear
# Testdata for present_over_time()
eval instant at 1m present_over_time(http_requests_total[5m])
eval instant at 1m present_over_time(http_requests_total{handler="/foo"}[5m])
eval instant at 1m present_over_time(http_requests_total{handler!="/foo"}[5m])
eval instant at 1m present_over_time(http_requests_total{handler="/foo", handler="/bar", handler="/foobar"}[5m])
eval instant at 1m present_over_time(rate(nonexistant[5m])[5m:])
eval instant at 1m present_over_time(http_requests_total{handler="/foo", handler="/bar", instance="127.0.0.1"}[5m])
load 1m
http_requests_total{path="/foo",instance="127.0.0.1",job="httpd"} 1+1x10
http_requests_total{path="/bar",instance="127.0.0.1",job="httpd"} 1+1x10
httpd_handshake_failures_total{instance="127.0.0.1",job="node"} 1+1x15
httpd_log_lines_total{instance="127.0.0.1",job="node"} 1
ssl_certificate_expiry_seconds{job="ingress"} NaN NaN NaN NaN NaN
eval instant at 5m present_over_time(http_requests_total[5m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 5m present_over_time(rate(http_requests_total[5m])[5m:1m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 0m present_over_time(httpd_log_lines_total[30s])
{instance="127.0.0.1",job="node"} 1
eval instant at 1m present_over_time(httpd_log_lines_total[30s])
eval instant at 15m present_over_time(http_requests_total[5m])
eval instant at 15m present_over_time(http_requests_total[10m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 16m present_over_time(http_requests_total[6m])
eval instant at 16m present_over_time(http_requests_total[16m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 16m present_over_time(httpd_handshake_failures_total[1m])
eval instant at 16m present_over_time({instance="127.0.0.1"}[5m])
{instance="127.0.0.1",job="node"} 1
eval instant at 21m present_over_time({job="grok"}[20m])
eval instant at 30m present_over_time({instance="127.0.0.1"}[5m:5s])
eval instant at 5m present_over_time({job="ingress"}[4m])
{job="ingress"} 1
eval instant at 10m present_over_time({job="ingress"}[4m])
clear
# Testing exp() sqrt() log2() log10() ln()
load 5m
exp_root_log{l="x"} 10
exp_root_log{l="y"} 20
eval instant at 1m exp(exp_root_log)
{l="x"} 22026.465794806718
{l="y"} 485165195.4097903
eval instant at 1m exp(exp_root_log - 10)
{l="y"} 22026.465794806718
{l="x"} 1
eval instant at 1m exp(exp_root_log - 20)
{l="x"} 4.5399929762484854e-05
{l="y"} 1
eval instant at 1m ln(exp_root_log)
{l="x"} 2.302585092994046
{l="y"} 2.995732273553991
eval instant at 1m ln(exp_root_log - 10)
{l="y"} 2.302585092994046
{l="x"} -Inf
eval instant at 1m ln(exp_root_log - 20)
{l="y"} -Inf
{l="x"} NaN
eval instant at 1m exp(ln(exp_root_log))
{l="y"} 20
{l="x"} 10
eval instant at 1m sqrt(exp_root_log)
{l="x"} 3.1622776601683795
{l="y"} 4.47213595499958
eval instant at 1m log2(exp_root_log)
{l="x"} 3.3219280948873626
{l="y"} 4.321928094887363
eval instant at 1m log2(exp_root_log - 10)
{l="y"} 3.3219280948873626
{l="x"} -Inf
eval instant at 1m log2(exp_root_log - 20)
{l="x"} NaN
{l="y"} -Inf
eval instant at 1m log10(exp_root_log)
{l="x"} 1
{l="y"} 1.301029995663981
eval instant at 1m log10(exp_root_log - 10)
{l="y"} 1
{l="x"} -Inf
eval instant at 1m log10(exp_root_log - 20)
{l="x"} NaN
{l="y"} -Inf
clear
# Test that timestamp() handles the scenario where there are more steps than samples.
load 1m
metric 0+1x1000
# We expect the value to be 0 for t=0s to t=59s (inclusive), then 60 for t=60s and t=61s.
eval range from 0 to 61s step 1s timestamp(metric)
{} 0x59 60 60
clear
# Check round with mixed data types
load 1m
mixed_metric {{schema:0 sum:5 count:4 buckets:[1 2 1]}} 1 2 3 {{schema:0 sum:5 count:4 buckets:[1 2 1]}} {{schema:0 sum:8 count:6 buckets:[1 4 1]}}
eval range from 0 to 5m step 1m round(mixed_metric)
{} _ 1 2 3