2013-02-08 09:03:26 -08:00
|
|
|
// Copyright 2013 Prometheus Team
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
package metric
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"github.com/prometheus/prometheus/model"
|
|
|
|
"github.com/prometheus/prometheus/utility/test"
|
2013-02-08 09:03:26 -08:00
|
|
|
"io/ioutil"
|
2013-02-08 09:03:26 -08:00
|
|
|
"math"
|
|
|
|
"math/rand"
|
2013-02-08 09:03:26 -08:00
|
|
|
"testing"
|
2013-02-08 09:03:26 -08:00
|
|
|
"testing/quick"
|
|
|
|
"time"
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
stochasticMaximumVariance = 8
|
|
|
|
)
|
|
|
|
|
|
|
|
func BasicLifecycleTests(p MetricPersistence, t test.Tester) {
|
|
|
|
if p == nil {
|
|
|
|
t.Errorf("Received nil Metric Persistence.\n")
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func ReadEmptyTests(p MetricPersistence, t test.Tester) {
|
|
|
|
hasLabelPair := func(x int) (success bool) {
|
|
|
|
name := model.LabelName(string(x))
|
|
|
|
value := model.LabelValue(string(x))
|
|
|
|
|
|
|
|
labelSet := model.LabelSet{
|
|
|
|
name: value,
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
success = len(fingerprints) == 0
|
|
|
|
if !success {
|
|
|
|
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
|
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
err := quick.Check(hasLabelPair, nil)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
hasLabelName := func(x int) (success bool) {
|
|
|
|
labelName := model.LabelName(string(x))
|
|
|
|
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
success = len(fingerprints) == 0
|
|
|
|
if !success {
|
|
|
|
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
|
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
err = quick.Check(hasLabelName, nil)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) {
|
|
|
|
appendSample := func(x int) (success bool) {
|
|
|
|
v := model.SampleValue(x)
|
|
|
|
ts := time.Unix(int64(x), int64(x))
|
|
|
|
labelName := model.LabelName(x)
|
|
|
|
labelValue := model.LabelValue(x)
|
|
|
|
l := model.Metric{labelName: labelValue}
|
|
|
|
|
|
|
|
sample := model.Sample{
|
|
|
|
Value: v,
|
|
|
|
Timestamp: ts,
|
|
|
|
Metric: l,
|
|
|
|
}
|
|
|
|
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
|
|
|
|
success = err == nil
|
|
|
|
if !success {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) {
|
|
|
|
appendSample := func(x int) (success bool) {
|
|
|
|
v := model.SampleValue(x)
|
|
|
|
ts := time.Unix(int64(x), int64(x))
|
|
|
|
labelName := model.LabelName(x)
|
|
|
|
labelValue := model.LabelValue(x)
|
|
|
|
l := model.Metric{labelName: labelValue}
|
|
|
|
|
|
|
|
sample := model.Sample{
|
|
|
|
Value: v,
|
|
|
|
Timestamp: ts,
|
|
|
|
Metric: l,
|
|
|
|
}
|
|
|
|
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) != 1 {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err = p.GetFingerprintsForLabelSet(model.LabelSet{
|
|
|
|
labelName: labelValue,
|
|
|
|
})
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) != 1 {
|
2013-03-14 14:51:29 -07:00
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
2013-02-08 09:03:26 -08:00
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) {
|
|
|
|
appendSample := func(x int) bool {
|
|
|
|
sample := model.Sample{
|
|
|
|
Value: model.SampleValue(x),
|
|
|
|
Timestamp: time.Unix(int64(x), 0),
|
|
|
|
Metric: model.Metric{"name": "my_metric"},
|
|
|
|
}
|
|
|
|
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
|
|
|
|
return err == nil
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func StochasticTests(persistenceMaker func() MetricPersistence, t test.Tester) {
|
|
|
|
stochastic := func(x int) (success bool) {
|
|
|
|
p := persistenceMaker()
|
|
|
|
defer func() {
|
|
|
|
err := p.Close()
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
}()
|
|
|
|
|
|
|
|
seed := rand.NewSource(int64(x))
|
|
|
|
random := rand.New(seed)
|
|
|
|
|
|
|
|
numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1
|
|
|
|
numberOfSharedLabels := random.Intn(stochasticMaximumVariance)
|
|
|
|
numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance)
|
|
|
|
numberOfSamples := random.Intn(stochasticMaximumVariance) + 2
|
|
|
|
numberOfRangeScans := random.Intn(stochasticMaximumVariance)
|
|
|
|
|
|
|
|
metricTimestamps := map[int]map[int64]bool{}
|
|
|
|
metricEarliestSample := map[int]int64{}
|
|
|
|
metricNewestSample := map[int]int64{}
|
|
|
|
|
|
|
|
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
|
|
|
|
sample := model.Sample{
|
|
|
|
Metric: model.Metric{},
|
|
|
|
}
|
|
|
|
|
|
|
|
v := model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
|
|
|
|
sample.Metric["name"] = v
|
|
|
|
|
|
|
|
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
|
|
|
|
l := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
|
|
|
|
v := model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex))
|
|
|
|
|
|
|
|
sample.Metric[l] = v
|
|
|
|
}
|
|
|
|
|
|
|
|
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
|
|
|
|
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
|
|
|
|
v := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
|
|
|
|
|
|
|
|
sample.Metric[l] = v
|
|
|
|
}
|
|
|
|
|
|
|
|
timestamps := map[int64]bool{}
|
|
|
|
metricTimestamps[metricIndex] = timestamps
|
|
|
|
var (
|
|
|
|
newestSample int64 = math.MinInt64
|
|
|
|
oldestSample int64 = math.MaxInt64
|
|
|
|
nextTimestamp func() int64
|
|
|
|
)
|
|
|
|
|
|
|
|
nextTimestamp = func() int64 {
|
|
|
|
var candidate int64
|
|
|
|
candidate = random.Int63n(math.MaxInt32 - 1)
|
|
|
|
|
|
|
|
if _, has := timestamps[candidate]; has {
|
|
|
|
// WART
|
|
|
|
candidate = nextTimestamp()
|
|
|
|
}
|
|
|
|
|
|
|
|
timestamps[candidate] = true
|
|
|
|
|
|
|
|
if candidate < oldestSample {
|
|
|
|
oldestSample = candidate
|
|
|
|
}
|
|
|
|
|
|
|
|
if candidate > newestSample {
|
|
|
|
newestSample = candidate
|
|
|
|
}
|
|
|
|
|
|
|
|
return candidate
|
|
|
|
}
|
|
|
|
|
|
|
|
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
|
|
|
|
sample.Timestamp = time.Unix(nextTimestamp(), 0)
|
|
|
|
sample.Value = model.SampleValue(sampleIndex)
|
|
|
|
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
metricEarliestSample[metricIndex] = oldestSample
|
|
|
|
metricNewestSample[metricIndex] = newestSample
|
|
|
|
|
|
|
|
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
|
|
|
|
labelPair := model.LabelSet{
|
|
|
|
model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)): model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)),
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelPair)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) == 0 {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
|
|
|
|
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) == 0 {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for sharedIndex := 0; sharedIndex < numberOfSharedLabels; sharedIndex++ {
|
|
|
|
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedIndex))
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(fingerprints) != numberOfMetrics {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", numberOfMetrics, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
|
|
|
|
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
|
|
|
|
labelName := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
|
|
|
|
labelValue := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
|
|
|
|
labelSet := model.LabelSet{
|
|
|
|
labelName: labelValue,
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) != 1 {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
|
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
if len(fingerprints) != 1 {
|
|
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
metric := model.Metric{}
|
|
|
|
metric["name"] = model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
|
|
|
|
|
|
|
|
for i := 0; i < numberOfSharedLabels; i++ {
|
|
|
|
l := model.LabelName(fmt.Sprintf("shared_label_%d", i))
|
|
|
|
v := model.LabelValue(fmt.Sprintf("label_%d", i))
|
|
|
|
|
|
|
|
metric[l] = v
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 0; i < numberOfUnsharedLabels; i++ {
|
|
|
|
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i))
|
|
|
|
v := model.LabelValue(fmt.Sprintf("private_label_%d", i))
|
|
|
|
|
|
|
|
metric[l] = v
|
|
|
|
}
|
|
|
|
|
|
|
|
for i := 0; i < numberOfRangeScans; i++ {
|
|
|
|
timestamps := metricTimestamps[metricIndex]
|
|
|
|
|
|
|
|
var first int64 = 0
|
|
|
|
var second int64 = 0
|
|
|
|
|
|
|
|
for {
|
|
|
|
firstCandidate := random.Int63n(int64(len(timestamps)))
|
|
|
|
secondCandidate := random.Int63n(int64(len(timestamps)))
|
|
|
|
|
|
|
|
smallest := int64(-1)
|
|
|
|
largest := int64(-1)
|
|
|
|
|
|
|
|
if firstCandidate == secondCandidate {
|
|
|
|
continue
|
|
|
|
} else if firstCandidate > secondCandidate {
|
|
|
|
largest = firstCandidate
|
|
|
|
smallest = secondCandidate
|
|
|
|
} else {
|
|
|
|
largest = secondCandidate
|
|
|
|
smallest = firstCandidate
|
|
|
|
}
|
|
|
|
|
|
|
|
j := int64(0)
|
|
|
|
for i := range timestamps {
|
|
|
|
if j == smallest {
|
|
|
|
first = i
|
|
|
|
} else if j == largest {
|
|
|
|
second = i
|
|
|
|
break
|
|
|
|
}
|
|
|
|
j++
|
|
|
|
}
|
|
|
|
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
|
|
|
begin := first
|
|
|
|
end := second
|
|
|
|
|
|
|
|
if second < first {
|
|
|
|
begin, end = second, first
|
|
|
|
}
|
|
|
|
|
|
|
|
interval := model.Interval{
|
|
|
|
OldestInclusive: time.Unix(begin, 0),
|
|
|
|
NewestInclusive: time.Unix(end, 0),
|
|
|
|
}
|
|
|
|
|
2013-03-18 08:46:52 -07:00
|
|
|
samples, err := p.GetRangeValues(model.NewFingerprintFromMetric(metric), interval)
|
2013-02-08 09:03:26 -08:00
|
|
|
if err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
if len(samples.Values) < 2 {
|
|
|
|
t.Errorf("expected sample count less than %d, got %d", 2, len(samples.Values))
|
|
|
|
return
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true
|
|
|
|
}
|
|
|
|
|
|
|
|
if err := quick.Check(stochastic, nil); err != nil {
|
|
|
|
t.Error(err)
|
|
|
|
}
|
|
|
|
}
|
2013-02-08 09:03:26 -08:00
|
|
|
|
|
|
|
// Test Definitions Follow
|
|
|
|
|
|
|
|
var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests)
|
|
|
|
|
|
|
|
func TestLevelDBBasicLifecycle(t *testing.T) {
|
|
|
|
testLevelDBBasicLifecycle(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBBasicLifecycle(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBBasicLifecycle(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests)
|
|
|
|
|
|
|
|
func TestLevelDBReadEmpty(t *testing.T) {
|
|
|
|
testLevelDBReadEmpty(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBReadEmpty(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBReadEmpty(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests)
|
|
|
|
|
|
|
|
func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) {
|
|
|
|
testLevelDBAppendSampleAsPureSparseAppend(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBAppendSampleAsPureSparseAppend(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests)
|
|
|
|
|
|
|
|
func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) {
|
|
|
|
testLevelDBAppendSampleAsSparseAppendWithReads(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBAppendSampleAsSparseAppendWithReads(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests)
|
|
|
|
|
|
|
|
func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) {
|
|
|
|
testLevelDBAppendSampleAsPureSingleEntityAppend(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBAppendSampleAsPureSingleEntityAppend(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func testLevelDBStochastic(t test.Tester) {
|
|
|
|
persistenceMaker := func() MetricPersistence {
|
|
|
|
temporaryDirectory, err := ioutil.TempDir("", "test_leveldb_stochastic")
|
|
|
|
if err != nil {
|
|
|
|
t.Errorf("Could not create test directory: %q\n", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
p, err := NewLevelDBMetricPersistence(temporaryDirectory)
|
|
|
|
if err != nil {
|
|
|
|
t.Errorf("Could not start up LevelDB: %q\n", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
return p
|
|
|
|
}
|
|
|
|
|
|
|
|
StochasticTests(persistenceMaker, t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestLevelDBStochastic(t *testing.T) {
|
|
|
|
testLevelDBStochastic(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkLevelDBStochastic(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testLevelDBStochastic(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests)
|
|
|
|
|
|
|
|
func TestMemoryBasicLifecycle(t *testing.T) {
|
|
|
|
testMemoryBasicLifecycle(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryBasicLifecycle(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryBasicLifecycle(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests)
|
|
|
|
|
|
|
|
func TestMemoryReadEmpty(t *testing.T) {
|
|
|
|
testMemoryReadEmpty(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryReadEmpty(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryReadEmpty(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests)
|
|
|
|
|
|
|
|
func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) {
|
|
|
|
testMemoryAppendSampleAsPureSparseAppend(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryAppendSampleAsPureSparseAppend(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests)
|
|
|
|
|
|
|
|
func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) {
|
|
|
|
testMemoryAppendSampleAsSparseAppendWithReads(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryAppendSampleAsSparseAppendWithReads(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests)
|
|
|
|
|
|
|
|
func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) {
|
|
|
|
testMemoryAppendSampleAsPureSingleEntityAppend(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryAppendSampleAsPureSingleEntityAppend(b)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
func testMemoryStochastic(t test.Tester) {
|
|
|
|
persistenceMaker := func() MetricPersistence {
|
|
|
|
return NewMemorySeriesStorage()
|
|
|
|
}
|
|
|
|
|
|
|
|
StochasticTests(persistenceMaker, t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func TestMemoryStochastic(t *testing.T) {
|
|
|
|
testMemoryStochastic(t)
|
|
|
|
}
|
|
|
|
|
|
|
|
func BenchmarkMemoryStochastic(b *testing.B) {
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
|
|
testMemoryStochastic(b)
|
|
|
|
}
|
|
|
|
}
|