prometheus/tsdb/hashcache/series_hash_cache_test.go

136 lines
3.8 KiB
Go
Raw Normal View History

package hashcache
import (
"crypto/rand"
"fmt"
"runtime"
"strconv"
"sync"
"testing"
"github.com/oklog/ulid"
"github.com/stretchr/testify/require"
)
func TestSeriesHashCache(t *testing.T) {
// Set the max cache size to store at most 1 entry per generation,
// so that we test the GC logic too.
c := NewSeriesHashCache(numGenerations * approxBytesPerEntry)
block1 := c.GetBlockCache("1")
assertFetch(t, block1, 1, 0, false)
block1.Store(1, 100)
assertFetch(t, block1, 1, 100, true)
block2 := c.GetBlockCache("2")
assertFetch(t, block2, 1, 0, false)
block2.Store(1, 1000)
assertFetch(t, block2, 1, 1000, true)
block3 := c.GetBlockCache("3")
assertFetch(t, block1, 1, 100, true)
assertFetch(t, block2, 1, 1000, true)
assertFetch(t, block3, 1, 0, false)
// Get again the block caches.
block1 = c.GetBlockCache("1")
block2 = c.GetBlockCache("2")
block3 = c.GetBlockCache("3")
assertFetch(t, block1, 1, 100, true)
assertFetch(t, block2, 1, 1000, true)
assertFetch(t, block3, 1, 0, false)
}
func TestSeriesHashCache_MeasureApproximateSizePerEntry(t *testing.T) {
// This test measures the approximate size (in bytes) per cache entry.
// We only take in account the memory used by the map, which is the largest amount.
const numEntries = 100000
c := NewSeriesHashCache(1024 * 1024 * 1024)
b := c.GetBlockCache(ulid.MustNew(0, rand.Reader).String())
before := runtime.MemStats{}
runtime.ReadMemStats(&before)
// Preallocate the map in order to not account for re-allocations
// since we want to measure the heap utilization and not allocations.
b.generations[0].hashes = make(map[uint64]uint64, numEntries)
for i := uint64(0); i < numEntries; i++ {
b.Store(i, i)
}
after := runtime.MemStats{}
runtime.ReadMemStats(&after)
t.Logf("approximate size per entry: %d bytes", (after.TotalAlloc-before.TotalAlloc)/numEntries)
require.Equal(t, uint64(approxBytesPerEntry), (after.TotalAlloc-before.TotalAlloc)/numEntries, "approxBytesPerEntry constant is out date")
}
func TestSeriesHashCache_Concurrency(t *testing.T) {
const (
concurrency = 100
numIterations = 10000
numBlocks = 10
)
// Set the max cache size to store at most 10 entries per generation,
// so that we stress test the GC too.
c := NewSeriesHashCache(10 * numGenerations * approxBytesPerEntry)
wg := sync.WaitGroup{}
wg.Add(concurrency)
for i := 0; i < concurrency; i++ {
go func() {
defer wg.Done()
for n := 0; n < numIterations; n++ {
blockID := strconv.Itoa(n % numBlocks)
blockCache := c.GetBlockCache(blockID)
blockCache.Store(uint64(n), uint64(n))
actual, ok := blockCache.Fetch(uint64(n))
require.True(t, ok)
require.Equal(t, uint64(n), actual)
}
}()
}
wg.Wait()
}
func BenchmarkSeriesHashCache_StoreAndFetch(b *testing.B) {
for _, numBlocks := range []int{1, 10, 100, 1000, 10000} {
b.Run(fmt.Sprintf("blocks=%d", numBlocks), func(b *testing.B) {
c := NewSeriesHashCache(1024 * 1024)
// In this benchmark we assume the usage pattern is calling Fetch() and Store() will be
// orders of magnitude more frequent than GetBlockCache(), so we call GetBlockCache() just
// once per block.
blockCaches := make([]*BlockSeriesHashCache, numBlocks)
for idx := 0; idx < numBlocks; idx++ {
blockCaches[idx] = c.GetBlockCache(strconv.Itoa(idx))
}
// In this benchmark we assume the ratio between Store() and Fetch() is 1:10.
storeOps := (b.N / 10) + 1
for n := 0; n < b.N; n++ {
if n < storeOps {
blockCaches[n%numBlocks].Store(uint64(n), uint64(n))
} else {
blockCaches[n%numBlocks].Fetch(uint64(n % storeOps))
}
}
})
}
}
func assertFetch(t *testing.T, c *BlockSeriesHashCache, seriesID, expectedValue uint64, expectedOk bool) {
actualValue, actualOk := c.Fetch(seriesID)
require.Equal(t, expectedValue, actualValue)
require.Equal(t, expectedOk, actualOk)
}