prometheus/retrieval/format/processor0_0_2_test.go

217 lines
6.7 KiB
Go
Raw Normal View History

2013-04-25 08:36:47 -07:00
// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package format
import (
"container/list"
"fmt"
"github.com/prometheus/prometheus/model"
"github.com/prometheus/prometheus/utility/test"
"os"
"path"
2013-04-25 08:36:47 -07:00
"testing"
"time"
)
func testProcessor002Process(t test.Tester) {
var scenarios = []struct {
in string
baseLabels model.LabelSet
out model.Samples
err error
2013-04-25 08:36:47 -07:00
}{
{
in: "empty.json",
err: fmt.Errorf("EOF"),
2013-04-25 08:36:47 -07:00
},
{
in: "test0_0_1-0_0_2.json",
baseLabels: model.LabelSet{
model.JobLabel: "batch_exporter",
},
out: model.Samples{
model.Sample{
Metric: model.Metric{"service": "zed", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
Value: 25,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"service": "bar", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
Value: 25,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"service": "foo", model.MetricNameLabel: "rpc_calls_total", "job": "batch_job", "exporter_job": "batch_exporter"},
Value: 25,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
Value: 0.0459814091918713,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
Value: 78.48563317257356,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.010000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
Value: 15.890724674774395,
2013-04-25 08:36:47 -07:00
},
model.Sample{
2013-04-25 08:36:47 -07:00
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
Value: 0.0459814091918713,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
Value: 78.48563317257356,
2013-04-25 08:36:47 -07:00
},
model.Sample{
2013-04-25 08:36:47 -07:00
Metric: model.Metric{"percentile": "0.050000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
Value: 15.890724674774395,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
Value: 0.6120456642749681,
2013-04-25 08:36:47 -07:00
},
model.Sample{
2013-04-25 08:36:47 -07:00
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
Value: 97.31798360385088,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.500000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
Value: 84.63044031436561,
2013-04-25 08:36:47 -07:00
},
model.Sample{
2013-04-25 08:36:47 -07:00
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
Value: 1.355915069887731,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
Value: 109.89202084295582,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.900000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
Value: 160.21100853053224,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "zed", "job": "batch_exporter"},
Value: 1.772733213161236,
2013-04-25 08:36:47 -07:00
},
model.Sample{
2013-04-25 08:36:47 -07:00
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "bar", "job": "batch_exporter"},
Value: 109.99626121011262,
2013-04-25 08:36:47 -07:00
},
model.Sample{
Metric: model.Metric{"percentile": "0.990000", model.MetricNameLabel: "rpc_latency_microseconds", "service": "foo", "job": "batch_exporter"},
Value: 172.49828748957728,
2013-04-25 08:36:47 -07:00
},
},
},
}
for i, scenario := range scenarios {
inputChannel := make(chan Result, 1024)
defer func(c chan Result) {
close(c)
}(inputChannel)
reader, err := os.Open(path.Join("fixtures", scenario.in))
if err != nil {
t.Fatalf("%d. couldn't open scenario input file %s: %s", scenario.in, err)
}
2013-04-25 08:36:47 -07:00
err = Processor002.Process(reader, time.Now(), scenario.baseLabels, inputChannel)
2013-04-25 08:36:47 -07:00
if !test.ErrorEqual(scenario.err, err) {
t.Errorf("%d. expected err of %s, got %s", i, scenario.err, err)
continue
}
delivered := model.Samples{}
2013-04-25 08:36:47 -07:00
for len(inputChannel) != 0 {
result := <-inputChannel
if result.Err != nil {
t.Fatalf("%d. expected no error, got: %s", i, result.Err)
}
delivered = append(delivered, result.Samples...)
2013-04-25 08:36:47 -07:00
}
if len(delivered) != len(scenario.out) {
t.Errorf("%d. expected output length of %d, got %d", i, len(scenario.out), len(delivered))
continue
}
expectedElements := list.New()
for _, j := range scenario.out {
expectedElements.PushBack(j)
}
for j := 0; j < len(delivered); j++ {
actual := delivered[j]
found := false
for element := expectedElements.Front(); element != nil && found == false; element = element.Next() {
candidate := element.Value.(model.Sample)
2013-04-25 08:36:47 -07:00
if candidate.Value != actual.Value {
2013-04-25 08:36:47 -07:00
continue
}
if len(candidate.Metric) != len(actual.Metric) {
2013-04-25 08:36:47 -07:00
continue
}
labelsMatch := false
for key, value := range candidate.Metric {
actualValue, ok := actual.Metric[key]
2013-04-25 08:36:47 -07:00
if !ok {
break
}
if actualValue == value {
labelsMatch = true
break
}
}
if !labelsMatch {
continue
}
// XXX: Test time.
found = true
expectedElements.Remove(element)
}
if !found {
t.Errorf("%d.%d. expected to find %s among candidate, absent", i, j, actual)
2013-04-25 08:36:47 -07:00
}
}
}
}
func TestProcessor002Process(t *testing.T) {
testProcessor002Process(t)
}
func BenchmarkProcessor002Process(b *testing.B) {
for i := 0; i < b.N; i++ {
testProcessor002Process(b)
}
}