2013-10-22 15:28:38 -07:00
// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
2013-10-30 09:06:17 -07:00
"flag"
2013-10-22 15:28:38 -07:00
"fmt"
"testing"
"time"
"github.com/prometheus/prometheus/storage"
clientmodel "github.com/prometheus/client_golang/model"
)
type nopCurationStateUpdater struct { }
2013-10-30 09:06:17 -07:00
2013-10-22 15:28:38 -07:00
func ( n * nopCurationStateUpdater ) UpdateCurationState ( * CurationState ) { }
Use custom timestamp type for sample timestamps and related code.
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
2013-10-28 06:35:02 -07:00
func generateTestSamples ( endTime clientmodel . Timestamp , numTs int , samplesPerTs int , interval time . Duration ) clientmodel . Samples {
2013-10-30 09:06:17 -07:00
samples := make ( clientmodel . Samples , 0 , numTs * samplesPerTs )
2013-10-22 15:28:38 -07:00
startTime := endTime . Add ( - interval * time . Duration ( samplesPerTs - 1 ) )
for ts := 0 ; ts < numTs ; ts ++ {
metric := clientmodel . Metric { }
metric [ "name" ] = clientmodel . LabelValue ( fmt . Sprintf ( "metric_%d" , ts ) )
for i := 0 ; i < samplesPerTs ; i ++ {
sample := & clientmodel . Sample {
Metric : metric ,
2013-10-30 09:06:17 -07:00
Value : clientmodel . SampleValue ( ts + 1000 * i ) ,
2013-10-22 15:28:38 -07:00
Timestamp : startTime . Add ( interval * time . Duration ( i ) ) ,
}
samples = append ( samples , sample )
}
}
return samples
}
type compactionChecker struct {
2013-10-30 09:06:17 -07:00
t * testing . T
sampleIdx int
numChunks int
2013-10-22 15:28:38 -07:00
expectedSamples clientmodel . Samples
}
func ( c * compactionChecker ) Operate ( key , value interface { } ) * storage . OperatorError {
c . numChunks ++
sampleKey := key . ( * SampleKey )
if sampleKey . FirstTimestamp . After ( sampleKey . LastTimestamp ) {
2013-10-30 09:06:17 -07:00
c . t . Fatalf ( "Chunk FirstTimestamp (%v) is after LastTimestamp (%v): %v" , sampleKey . FirstTimestamp . Unix ( ) , sampleKey . LastTimestamp . Unix ( ) , sampleKey )
2013-10-22 15:28:38 -07:00
}
2013-10-30 09:06:17 -07:00
fp := new ( clientmodel . Fingerprint )
2013-10-22 15:28:38 -07:00
for _ , sample := range value . ( Values ) {
if sample . Timestamp . Before ( sampleKey . FirstTimestamp ) || sample . Timestamp . After ( sampleKey . LastTimestamp ) {
2013-10-30 09:06:17 -07:00
c . t . Fatalf ( "Sample not within chunk boundaries: chunk FirstTimestamp (%v), chunk LastTimestamp (%v) vs. sample Timestamp (%v)" , sampleKey . FirstTimestamp . Unix ( ) , sampleKey . LastTimestamp . Unix ( ) , sample . Timestamp )
2013-10-22 15:28:38 -07:00
}
expected := c . expectedSamples [ c . sampleIdx ]
fp . LoadFromMetric ( expected . Metric )
if ! sampleKey . Fingerprint . Equal ( fp ) {
c . t . Fatalf ( "%d. Expected fingerprint %s, got %s" , c . sampleIdx , fp , sampleKey . Fingerprint )
}
sp := & SamplePair {
2013-10-30 09:06:17 -07:00
Value : expected . Value ,
2013-10-22 15:28:38 -07:00
Timestamp : expected . Timestamp ,
}
if ! sample . Equal ( sp ) {
c . t . Fatalf ( "%d. Expected sample %s, got %s" , c . sampleIdx , sp , sample )
}
c . sampleIdx ++
}
return nil
}
func checkStorageSaneAndEquivalent ( t * testing . T , name string , ts * TieredStorage , samples clientmodel . Samples , expectedNumChunks int ) {
cc := & compactionChecker {
expectedSamples : samples ,
2013-10-30 09:06:17 -07:00
t : t ,
2013-10-22 15:28:38 -07:00
}
entire , err := ts . DiskStorage . MetricSamples . ForEach ( & MetricSamplesDecoder { } , & AcceptAllFilter { } , cc )
if err != nil {
t . Fatalf ( "%s: Error dumping samples: %s" , name , err )
}
if ! entire {
t . Fatalf ( "%s: Didn't scan entire corpus" , name )
}
if cc . numChunks != expectedNumChunks {
t . Fatalf ( "%s: Expected %d chunks, got %d" , name , expectedNumChunks , cc . numChunks )
}
}
type compactionTestScenario struct {
leveldbChunkSize int
2013-10-30 09:06:17 -07:00
numTimeseries int
samplesPerTs int
2013-10-22 15:28:38 -07:00
2013-10-30 09:06:17 -07:00
ignoreYoungerThan time . Duration
2013-10-22 15:28:38 -07:00
maximumMutationPoolBatch int
2013-10-30 09:06:17 -07:00
minimumGroupSize int
2013-10-22 15:28:38 -07:00
uncompactedChunks int
2013-10-30 09:06:17 -07:00
compactedChunks int
2013-10-22 15:28:38 -07:00
}
2013-10-30 09:06:17 -07:00
func ( s compactionTestScenario ) test ( t * testing . T ) {
defer flag . Set ( "leveldbChunkSize" , flag . Lookup ( "leveldbChunkSize" ) . Value . String ( ) )
2013-10-22 15:28:38 -07:00
flag . Set ( "leveldbChunkSize" , fmt . Sprintf ( "%d" , s . leveldbChunkSize ) )
ts , closer := NewTestTieredStorage ( t )
defer closer . Close ( )
// 1. Store test values.
samples := generateTestSamples ( testInstant , s . numTimeseries , s . samplesPerTs , time . Minute )
ts . AppendSamples ( samples )
ts . Flush ( )
// 2. Check sanity of uncompacted values.
checkStorageSaneAndEquivalent ( t , "Before compaction" , ts , samples , s . uncompactedChunks )
// 3. Compact test storage.
processor := NewCompactionProcessor ( & CompactionProcessorOptions {
MaximumMutationPoolBatch : s . maximumMutationPoolBatch ,
2013-10-30 09:06:17 -07:00
MinimumGroupSize : s . minimumGroupSize ,
2013-10-22 15:28:38 -07:00
} )
defer processor . Close ( )
curator := NewCurator ( & CuratorOptions {
2013-10-30 09:06:17 -07:00
Stop : make ( chan bool ) ,
2013-10-22 15:28:38 -07:00
ViewQueue : ts . ViewQueue ,
} )
defer curator . Close ( )
err := curator . Run ( s . ignoreYoungerThan , testInstant , processor , ts . DiskStorage . CurationRemarks , ts . DiskStorage . MetricSamples , ts . DiskStorage . MetricHighWatermarks , & nopCurationStateUpdater { } )
if err != nil {
t . Fatalf ( "Failed to run curator: %s" , err )
}
// 4. Check sanity of compacted values.
checkStorageSaneAndEquivalent ( t , "After compaction" , ts , samples , s . compactedChunks )
}
func TestCompaction ( t * testing . T ) {
scenarios := [ ] compactionTestScenario {
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
//
// AFTER COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 10
// 5 | A | 11 .. 15
// 10 | B | 1 .. 10
// 5 | B | 11 .. 15
// 10 | C | 1 .. 10
// 5 | C | 11 .. 15
{
leveldbChunkSize : 5 ,
2013-10-30 09:06:17 -07:00
numTimeseries : 3 ,
samplesPerTs : 15 ,
2013-10-22 15:28:38 -07:00
2013-10-30 09:06:17 -07:00
ignoreYoungerThan : time . Minute ,
2013-10-22 15:28:38 -07:00
maximumMutationPoolBatch : 30 ,
2013-10-30 09:06:17 -07:00
minimumGroupSize : 10 ,
2013-10-22 15:28:38 -07:00
uncompactedChunks : 9 ,
2013-10-30 09:06:17 -07:00
compactedChunks : 6 ,
2013-10-22 15:28:38 -07:00
} ,
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
//
// AFTER COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 15
// 10 | B | 1 .. 15
// 10 | C | 1 .. 15
{
leveldbChunkSize : 5 ,
2013-10-30 09:06:17 -07:00
numTimeseries : 3 ,
samplesPerTs : 15 ,
2013-10-22 15:28:38 -07:00
2013-10-30 09:06:17 -07:00
ignoreYoungerThan : time . Minute ,
2013-10-22 15:28:38 -07:00
maximumMutationPoolBatch : 30 ,
2013-10-30 09:06:17 -07:00
minimumGroupSize : 30 ,
2013-10-22 15:28:38 -07:00
uncompactedChunks : 9 ,
2013-10-30 09:06:17 -07:00
compactedChunks : 3 ,
2013-10-22 15:28:38 -07:00
} ,
2013-12-02 04:36:47 -08:00
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | A | 16 .. 20
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | B | 16 .. 20
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
// 5 | C | 16 .. 20
//
// AFTER COMPACTION:
2013-10-22 15:28:38 -07:00
//
2013-12-02 04:36:47 -08:00
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 15
// 10 | A | 16 .. 20
// 10 | B | 1 .. 15
// 10 | B | 16 .. 20
// 10 | C | 1 .. 15
// 10 | C | 16 .. 20
{
leveldbChunkSize : 5 ,
numTimeseries : 3 ,
samplesPerTs : 20 ,
ignoreYoungerThan : time . Minute ,
maximumMutationPoolBatch : 30 ,
minimumGroupSize : 10 ,
uncompactedChunks : 12 ,
compactedChunks : 6 ,
} ,
2013-10-22 15:28:38 -07:00
}
for _ , s := range scenarios {
2013-10-30 09:06:17 -07:00
s . test ( t )
2013-10-22 15:28:38 -07:00
}
}