2017-04-10 11:59:45 -07:00
|
|
|
// Copyright 2017 The Prometheus Authors
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
2017-11-30 06:34:49 -08:00
|
|
|
package index
|
2017-03-06 08:36:03 -08:00
|
|
|
|
|
|
|
import (
|
2019-12-16 09:24:48 -08:00
|
|
|
"context"
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
"fmt"
|
2017-03-06 08:36:03 -08:00
|
|
|
"io/ioutil"
|
2017-03-14 07:24:08 -07:00
|
|
|
"math/rand"
|
2017-03-06 08:36:03 -08:00
|
|
|
"os"
|
2017-03-08 07:54:13 -08:00
|
|
|
"path/filepath"
|
2017-03-14 07:24:08 -07:00
|
|
|
"sort"
|
2017-03-07 02:29:20 -08:00
|
|
|
"testing"
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
"github.com/pkg/errors"
|
2019-11-18 11:53:33 -08:00
|
|
|
"github.com/prometheus/prometheus/pkg/labels"
|
2019-08-13 01:34:14 -07:00
|
|
|
"github.com/prometheus/prometheus/tsdb/chunkenc"
|
|
|
|
"github.com/prometheus/prometheus/tsdb/chunks"
|
|
|
|
"github.com/prometheus/prometheus/tsdb/encoding"
|
2019-08-14 02:07:02 -07:00
|
|
|
"github.com/prometheus/prometheus/util/testutil"
|
2017-03-06 08:36:03 -08:00
|
|
|
)
|
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
type series struct {
|
|
|
|
l labels.Labels
|
2017-11-30 06:34:49 -08:00
|
|
|
chunks []chunks.Meta
|
2017-03-07 02:29:20 -08:00
|
|
|
}
|
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
type mockIndex struct {
|
2017-09-04 07:08:38 -07:00
|
|
|
series map[uint64]series
|
2017-03-29 16:18:41 -07:00
|
|
|
labelIndex map[string][]string
|
2017-11-30 06:34:49 -08:00
|
|
|
postings map[labels.Label][]uint64
|
2017-08-05 04:31:48 -07:00
|
|
|
symbols map[string]struct{}
|
2017-03-07 02:29:20 -08:00
|
|
|
}
|
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
func newMockIndex() mockIndex {
|
2017-10-09 06:21:46 -07:00
|
|
|
ix := mockIndex{
|
2017-09-04 07:08:38 -07:00
|
|
|
series: make(map[uint64]series),
|
2017-03-29 16:18:41 -07:00
|
|
|
labelIndex: make(map[string][]string),
|
2017-11-30 06:34:49 -08:00
|
|
|
postings: make(map[labels.Label][]uint64),
|
2017-08-05 04:31:48 -07:00
|
|
|
symbols: make(map[string]struct{}),
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
2019-12-11 09:20:41 -08:00
|
|
|
ix.postings[allPostingsKey] = []uint64{}
|
2017-10-09 06:21:46 -07:00
|
|
|
return ix
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
func (m mockIndex) Symbols() (map[string]struct{}, error) {
|
|
|
|
return m.symbols, nil
|
|
|
|
}
|
|
|
|
|
2017-11-30 06:34:49 -08:00
|
|
|
func (m mockIndex) AddSeries(ref uint64, l labels.Labels, chunks ...chunks.Meta) error {
|
2017-03-29 16:18:41 -07:00
|
|
|
if _, ok := m.series[ref]; ok {
|
|
|
|
return errors.Errorf("series with reference %d already added", ref)
|
|
|
|
}
|
2017-08-05 04:31:48 -07:00
|
|
|
for _, lbl := range l {
|
|
|
|
m.symbols[lbl.Name] = struct{}{}
|
|
|
|
m.symbols[lbl.Value] = struct{}{}
|
2019-12-11 09:20:41 -08:00
|
|
|
if _, ok := m.postings[lbl]; !ok {
|
|
|
|
m.postings[lbl] = []uint64{}
|
|
|
|
}
|
|
|
|
m.postings[lbl] = append(m.postings[lbl], ref)
|
2017-08-05 04:31:48 -07:00
|
|
|
}
|
2019-12-11 09:20:41 -08:00
|
|
|
m.postings[allPostingsKey] = append(m.postings[allPostingsKey], ref)
|
2017-03-29 16:18:41 -07:00
|
|
|
|
2017-04-24 08:10:12 -07:00
|
|
|
s := series{l: l}
|
|
|
|
// Actual chunk data is not stored in the index.
|
|
|
|
for _, c := range chunks {
|
2017-08-06 11:41:24 -07:00
|
|
|
c.Chunk = nil
|
|
|
|
s.chunks = append(s.chunks, c)
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
2017-04-24 08:10:12 -07:00
|
|
|
m.series[ref] = s
|
2017-03-29 16:18:41 -07:00
|
|
|
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m mockIndex) WriteLabelIndex(names []string, values []string) error {
|
|
|
|
// TODO support composite indexes
|
|
|
|
if len(names) != 1 {
|
|
|
|
return errors.New("composite indexes not supported yet")
|
|
|
|
}
|
|
|
|
sort.Strings(values)
|
|
|
|
m.labelIndex[names[0]] = values
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
|
|
|
func (m mockIndex) Close() error {
|
|
|
|
return nil
|
2017-03-07 02:29:20 -08:00
|
|
|
}
|
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
func (m mockIndex) LabelValues(names ...string) (StringTuples, error) {
|
|
|
|
// TODO support composite indexes
|
|
|
|
if len(names) != 1 {
|
|
|
|
return nil, errors.New("composite indexes not supported yet")
|
|
|
|
}
|
|
|
|
|
2017-11-30 06:34:49 -08:00
|
|
|
return NewStringTuples(m.labelIndex[names[0]], 1)
|
2017-03-07 02:29:20 -08:00
|
|
|
}
|
|
|
|
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
func (m mockIndex) Postings(name string, values ...string) (Postings, error) {
|
|
|
|
p := []Postings{}
|
|
|
|
for _, value := range values {
|
|
|
|
l := labels.Label{Name: name, Value: value}
|
2019-12-11 09:20:41 -08:00
|
|
|
p = append(p, m.SortedPostings(NewListPostings(m.postings[l])))
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
}
|
|
|
|
return Merge(p...), nil
|
2017-08-05 04:31:48 -07:00
|
|
|
}
|
2017-03-29 16:18:41 -07:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
func (m mockIndex) SortedPostings(p Postings) Postings {
|
2017-11-30 06:34:49 -08:00
|
|
|
ep, err := ExpandPostings(p)
|
2017-08-05 04:31:48 -07:00
|
|
|
if err != nil {
|
2017-11-30 06:34:49 -08:00
|
|
|
return ErrPostings(errors.Wrap(err, "expand postings"))
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
sort.Slice(ep, func(i, j int) bool {
|
|
|
|
return labels.Compare(m.series[ep[i]].l, m.series[ep[j]].l) < 0
|
|
|
|
})
|
2017-11-30 06:34:49 -08:00
|
|
|
return NewListPostings(ep)
|
2017-03-07 02:29:20 -08:00
|
|
|
}
|
|
|
|
|
2017-11-30 06:34:49 -08:00
|
|
|
func (m mockIndex) Series(ref uint64, lset *labels.Labels, chks *[]chunks.Meta) error {
|
2017-03-29 16:18:41 -07:00
|
|
|
s, ok := m.series[ref]
|
|
|
|
if !ok {
|
2017-11-30 06:34:49 -08:00
|
|
|
return errors.New("not found")
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
2017-08-05 04:31:48 -07:00
|
|
|
*lset = append((*lset)[:0], s.l...)
|
|
|
|
*chks = append((*chks)[:0], s.chunks...)
|
2017-03-29 16:18:41 -07:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
return nil
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
|
|
|
|
2017-03-08 07:54:13 -08:00
|
|
|
func TestIndexRW_Create_Open(t *testing.T) {
|
|
|
|
dir, err := ioutil.TempDir("", "test_index_create")
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2019-03-19 06:31:57 -07:00
|
|
|
defer func() {
|
|
|
|
testutil.Ok(t, os.RemoveAll(dir))
|
|
|
|
}()
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2019-01-29 00:32:32 -08:00
|
|
|
fn := filepath.Join(dir, indexFilename)
|
2017-11-30 06:34:49 -08:00
|
|
|
|
2017-03-08 07:54:13 -08:00
|
|
|
// An empty index must still result in a readable file.
|
2019-12-16 09:24:48 -08:00
|
|
|
iw, err := NewWriter(context.Background(), fn)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
|
|
|
testutil.Ok(t, iw.Close())
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2018-02-09 04:11:03 -08:00
|
|
|
ir, err := NewFileReader(fn)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
|
|
|
testutil.Ok(t, ir.Close())
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2017-03-08 07:54:13 -08:00
|
|
|
// Modify magic header must cause open to fail.
|
2017-11-30 06:34:49 -08:00
|
|
|
f, err := os.OpenFile(fn, os.O_WRONLY, 0666)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-08 07:54:13 -08:00
|
|
|
_, err = f.WriteAt([]byte{0, 0}, 0)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2019-03-19 06:31:57 -07:00
|
|
|
f.Close()
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2018-02-09 04:11:03 -08:00
|
|
|
_, err = NewFileReader(dir)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.NotOk(t, err)
|
2017-03-08 07:54:13 -08:00
|
|
|
}
|
2017-03-06 08:36:03 -08:00
|
|
|
|
2017-03-09 00:39:30 -08:00
|
|
|
func TestIndexRW_Postings(t *testing.T) {
|
|
|
|
dir, err := ioutil.TempDir("", "test_index_postings")
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2019-03-19 06:31:57 -07:00
|
|
|
defer func() {
|
|
|
|
testutil.Ok(t, os.RemoveAll(dir))
|
|
|
|
}()
|
2017-03-09 00:39:30 -08:00
|
|
|
|
2019-01-29 00:32:32 -08:00
|
|
|
fn := filepath.Join(dir, indexFilename)
|
2017-11-30 06:34:49 -08:00
|
|
|
|
2019-12-16 09:24:48 -08:00
|
|
|
iw, err := NewWriter(context.Background(), fn)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-09 00:39:30 -08:00
|
|
|
|
|
|
|
series := []labels.Labels{
|
|
|
|
labels.FromStrings("a", "1", "b", "1"),
|
|
|
|
labels.FromStrings("a", "1", "b", "2"),
|
|
|
|
labels.FromStrings("a", "1", "b", "3"),
|
|
|
|
labels.FromStrings("a", "1", "b", "4"),
|
|
|
|
}
|
|
|
|
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
testutil.Ok(t, iw.AddSymbol("1"))
|
|
|
|
testutil.Ok(t, iw.AddSymbol("2"))
|
|
|
|
testutil.Ok(t, iw.AddSymbol("3"))
|
|
|
|
testutil.Ok(t, iw.AddSymbol("4"))
|
|
|
|
testutil.Ok(t, iw.AddSymbol("a"))
|
|
|
|
testutil.Ok(t, iw.AddSymbol("b"))
|
2017-08-05 04:31:48 -07:00
|
|
|
|
2017-03-09 00:39:30 -08:00
|
|
|
// Postings lists are only written if a series with the respective
|
|
|
|
// reference was added before.
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, iw.AddSeries(1, series[0]))
|
|
|
|
testutil.Ok(t, iw.AddSeries(2, series[1]))
|
|
|
|
testutil.Ok(t, iw.AddSeries(3, series[2]))
|
|
|
|
testutil.Ok(t, iw.AddSeries(4, series[3]))
|
2017-03-09 00:39:30 -08:00
|
|
|
|
Load only some offsets into the symbol table into memory.
Rather than keeping the entire symbol table in memory, keep every nth
offset and walk from there to the entry we need. This ends up slightly
slower, ~360ms per 1M series returned from PostingsForMatchers which is
not much considering the rest of the CPU such a query would go on to
use.
Make LabelValues use the postings tables, rather than having
to do symbol lookups. Use yoloString, as PostingsForMatchers
doesn't need the strings to stick around and adjust the API
call to keep the Querier open until it's all marshalled.
Remove allocatedSymbols memory optimisation, we no longer keep all the
symbol strings in heap memory. Remove LabelValuesFor and LabelIndices,
they're dead code. Ensure we've still tests for label indices,
and add missing test that we can work with old V1 Format index files.
PostingForMatchers performance is slightly better, with a big drop in
allocation counts due to using yoloString for LabelValues:
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 36698 36681 -0.05%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 522786 560887 +7.29%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 511652 537680 +5.09%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 522102 564239 +8.07%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113689911 111795919 -1.67%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 135825572 132871085 -2.18%
BenchmarkPostingsForMatchers/Block/i=~""-4 40782628 38038181 -6.73%
BenchmarkPostingsForMatchers/Block/i!=""-4 31267869 29194327 -6.63%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112733329 111568823 -1.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112868153 111232029 -1.45%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 31338257 29349446 -6.35%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 32054482 29972436 -6.50%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 136504654 133968442 -1.86%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 27960350 27264997 -2.49%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 136765564 133860724 -2.12%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 163714583 159453668 -2.60%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 6 6 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 11 11 +0.00%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 11 11 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 17 15 -11.76%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100012 12 -99.99%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200040 100040 -49.99%
BenchmarkPostingsForMatchers/Block/i=~""-4 200045 100045 -49.99%
BenchmarkPostingsForMatchers/Block/i!=""-4 200041 100041 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100017 17 -99.98%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100023 23 -99.98%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200046 100046 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200050 100050 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200049 100049 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111150 11150 -89.97%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200055 100055 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311238 111238 -64.26%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 296 296 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 424 424 +0.00%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 424 424 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 552 1544 +179.71%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600482 1606125 +0.35%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 17259065 17264709 +0.03%
BenchmarkPostingsForMatchers/Block/i=~""-4 17259150 17264780 +0.03%
BenchmarkPostingsForMatchers/Block/i!=""-4 17259048 17264680 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600610 1606242 +0.35%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600813 1606434 +0.35%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 17259176 17264808 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 17259304 17264936 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 17259333 17264965 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3142628 3148262 +0.18%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 17259509 17265141 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 20405680 20416944 +0.06%
However overall Select performance is down and involves more allocs, due to
having to do more than a simple map lookup to resolve a symbol and that all the strings
returned are allocated:
benchmark old ns/op new ns/op delta
BenchmarkQuerierSelect/Block/1of1000000-4 506092636 862678244 +70.46%
BenchmarkQuerierSelect/Block/10of1000000-4 505638968 860917636 +70.26%
BenchmarkQuerierSelect/Block/100of1000000-4 505229450 882150048 +74.60%
BenchmarkQuerierSelect/Block/1000of1000000-4 515905414 862241115 +67.13%
BenchmarkQuerierSelect/Block/10000of1000000-4 516785354 874841110 +69.29%
BenchmarkQuerierSelect/Block/100000of1000000-4 540742808 907030187 +67.74%
BenchmarkQuerierSelect/Block/1000000of1000000-4 815224288 1181236903 +44.90%
benchmark old allocs new allocs delta
BenchmarkQuerierSelect/Block/1of1000000-4 4000020 6000020 +50.00%
BenchmarkQuerierSelect/Block/10of1000000-4 4000038 6000038 +50.00%
BenchmarkQuerierSelect/Block/100of1000000-4 4000218 6000218 +50.00%
BenchmarkQuerierSelect/Block/1000of1000000-4 4002018 6002018 +49.97%
BenchmarkQuerierSelect/Block/10000of1000000-4 4020018 6020018 +49.75%
BenchmarkQuerierSelect/Block/100000of1000000-4 4200018 6200018 +47.62%
BenchmarkQuerierSelect/Block/1000000of1000000-4 6000018 8000019 +33.33%
benchmark old bytes new bytes delta
BenchmarkQuerierSelect/Block/1of1000000-4 176001468 227201476 +29.09%
BenchmarkQuerierSelect/Block/10of1000000-4 176002620 227202628 +29.09%
BenchmarkQuerierSelect/Block/100of1000000-4 176014140 227214148 +29.09%
BenchmarkQuerierSelect/Block/1000of1000000-4 176129340 227329348 +29.07%
BenchmarkQuerierSelect/Block/10000of1000000-4 177281340 228481348 +28.88%
BenchmarkQuerierSelect/Block/100000of1000000-4 188801340 240001348 +27.12%
BenchmarkQuerierSelect/Block/1000000of1000000-4 304001340 355201616 +16.84%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-12 08:55:32 -08:00
|
|
|
testutil.Ok(t, iw.WriteLabelIndex([]string{"a"}, []string{"1"}))
|
|
|
|
testutil.Ok(t, iw.WriteLabelIndex([]string{"b"}, []string{"1", "2", "3", "4"}))
|
2017-03-09 00:39:30 -08:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, iw.Close())
|
2017-03-09 00:39:30 -08:00
|
|
|
|
2018-02-09 04:11:03 -08:00
|
|
|
ir, err := NewFileReader(fn)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-09 00:39:30 -08:00
|
|
|
|
|
|
|
p, err := ir.Postings("a", "1")
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-09 00:39:30 -08:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
var l labels.Labels
|
2017-11-30 06:34:49 -08:00
|
|
|
var c []chunks.Meta
|
2017-08-05 04:31:48 -07:00
|
|
|
|
2017-03-09 00:39:30 -08:00
|
|
|
for i := 0; p.Next(); i++ {
|
2017-08-05 04:31:48 -07:00
|
|
|
err := ir.Series(p.At(), &l, &c)
|
2017-03-09 00:39:30 -08:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
|
|
|
testutil.Equals(t, 0, len(c))
|
|
|
|
testutil.Equals(t, series[i], l)
|
2017-03-09 00:39:30 -08:00
|
|
|
}
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, p.Err())
|
2017-03-09 00:39:30 -08:00
|
|
|
|
Load only some offsets into the symbol table into memory.
Rather than keeping the entire symbol table in memory, keep every nth
offset and walk from there to the entry we need. This ends up slightly
slower, ~360ms per 1M series returned from PostingsForMatchers which is
not much considering the rest of the CPU such a query would go on to
use.
Make LabelValues use the postings tables, rather than having
to do symbol lookups. Use yoloString, as PostingsForMatchers
doesn't need the strings to stick around and adjust the API
call to keep the Querier open until it's all marshalled.
Remove allocatedSymbols memory optimisation, we no longer keep all the
symbol strings in heap memory. Remove LabelValuesFor and LabelIndices,
they're dead code. Ensure we've still tests for label indices,
and add missing test that we can work with old V1 Format index files.
PostingForMatchers performance is slightly better, with a big drop in
allocation counts due to using yoloString for LabelValues:
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 36698 36681 -0.05%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 522786 560887 +7.29%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 511652 537680 +5.09%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 522102 564239 +8.07%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113689911 111795919 -1.67%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 135825572 132871085 -2.18%
BenchmarkPostingsForMatchers/Block/i=~""-4 40782628 38038181 -6.73%
BenchmarkPostingsForMatchers/Block/i!=""-4 31267869 29194327 -6.63%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112733329 111568823 -1.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112868153 111232029 -1.45%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 31338257 29349446 -6.35%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 32054482 29972436 -6.50%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 136504654 133968442 -1.86%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 27960350 27264997 -2.49%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 136765564 133860724 -2.12%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 163714583 159453668 -2.60%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 6 6 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 11 11 +0.00%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 11 11 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 17 15 -11.76%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100012 12 -99.99%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200040 100040 -49.99%
BenchmarkPostingsForMatchers/Block/i=~""-4 200045 100045 -49.99%
BenchmarkPostingsForMatchers/Block/i!=""-4 200041 100041 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100017 17 -99.98%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100023 23 -99.98%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200046 100046 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200050 100050 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200049 100049 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111150 11150 -89.97%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200055 100055 -49.99%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311238 111238 -64.26%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 296 296 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 424 424 +0.00%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 424 424 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 552 1544 +179.71%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600482 1606125 +0.35%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 17259065 17264709 +0.03%
BenchmarkPostingsForMatchers/Block/i=~""-4 17259150 17264780 +0.03%
BenchmarkPostingsForMatchers/Block/i!=""-4 17259048 17264680 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600610 1606242 +0.35%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600813 1606434 +0.35%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 17259176 17264808 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 17259304 17264936 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 17259333 17264965 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3142628 3148262 +0.18%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 17259509 17265141 +0.03%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 20405680 20416944 +0.06%
However overall Select performance is down and involves more allocs, due to
having to do more than a simple map lookup to resolve a symbol and that all the strings
returned are allocated:
benchmark old ns/op new ns/op delta
BenchmarkQuerierSelect/Block/1of1000000-4 506092636 862678244 +70.46%
BenchmarkQuerierSelect/Block/10of1000000-4 505638968 860917636 +70.26%
BenchmarkQuerierSelect/Block/100of1000000-4 505229450 882150048 +74.60%
BenchmarkQuerierSelect/Block/1000of1000000-4 515905414 862241115 +67.13%
BenchmarkQuerierSelect/Block/10000of1000000-4 516785354 874841110 +69.29%
BenchmarkQuerierSelect/Block/100000of1000000-4 540742808 907030187 +67.74%
BenchmarkQuerierSelect/Block/1000000of1000000-4 815224288 1181236903 +44.90%
benchmark old allocs new allocs delta
BenchmarkQuerierSelect/Block/1of1000000-4 4000020 6000020 +50.00%
BenchmarkQuerierSelect/Block/10of1000000-4 4000038 6000038 +50.00%
BenchmarkQuerierSelect/Block/100of1000000-4 4000218 6000218 +50.00%
BenchmarkQuerierSelect/Block/1000of1000000-4 4002018 6002018 +49.97%
BenchmarkQuerierSelect/Block/10000of1000000-4 4020018 6020018 +49.75%
BenchmarkQuerierSelect/Block/100000of1000000-4 4200018 6200018 +47.62%
BenchmarkQuerierSelect/Block/1000000of1000000-4 6000018 8000019 +33.33%
benchmark old bytes new bytes delta
BenchmarkQuerierSelect/Block/1of1000000-4 176001468 227201476 +29.09%
BenchmarkQuerierSelect/Block/10of1000000-4 176002620 227202628 +29.09%
BenchmarkQuerierSelect/Block/100of1000000-4 176014140 227214148 +29.09%
BenchmarkQuerierSelect/Block/1000of1000000-4 176129340 227329348 +29.07%
BenchmarkQuerierSelect/Block/10000of1000000-4 177281340 228481348 +28.88%
BenchmarkQuerierSelect/Block/100000of1000000-4 188801340 240001348 +27.12%
BenchmarkQuerierSelect/Block/1000000of1000000-4 304001340 355201616 +16.84%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-12 08:55:32 -08:00
|
|
|
// The label incides are no longer used, so test them by hand here.
|
|
|
|
labelIndices := map[string][]string{}
|
|
|
|
testutil.Ok(t, ReadOffsetTable(ir.b, ir.toc.LabelIndicesTable, func(key []string, off uint64, _ int) error {
|
|
|
|
if len(key) != 1 {
|
|
|
|
return errors.Errorf("unexpected key length for label indices table %d", len(key))
|
|
|
|
}
|
|
|
|
|
|
|
|
d := encoding.NewDecbufAt(ir.b, int(off), castagnoliTable)
|
|
|
|
vals := []string{}
|
|
|
|
nc := d.Be32int()
|
|
|
|
if nc != 1 {
|
|
|
|
return errors.Errorf("unexpected nuumber of label indices table names %d", nc)
|
|
|
|
}
|
|
|
|
for i := d.Be32(); i > 0; i-- {
|
|
|
|
v, err := ir.lookupSymbol(d.Be32())
|
|
|
|
if err != nil {
|
|
|
|
return err
|
|
|
|
}
|
|
|
|
vals = append(vals, v)
|
|
|
|
}
|
|
|
|
labelIndices[key[0]] = vals
|
|
|
|
return d.Err()
|
|
|
|
}))
|
|
|
|
testutil.Equals(t, map[string][]string{
|
|
|
|
"a": []string{"1"},
|
|
|
|
"b": []string{"1", "2", "3", "4"},
|
|
|
|
}, labelIndices)
|
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, ir.Close())
|
2017-03-09 00:39:30 -08:00
|
|
|
}
|
|
|
|
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
func TestPostingsMany(t *testing.T) {
|
|
|
|
dir, err := ioutil.TempDir("", "test_postings_many")
|
|
|
|
testutil.Ok(t, err)
|
|
|
|
defer func() {
|
|
|
|
testutil.Ok(t, os.RemoveAll(dir))
|
|
|
|
}()
|
|
|
|
|
|
|
|
fn := filepath.Join(dir, indexFilename)
|
|
|
|
|
2019-12-16 09:24:48 -08:00
|
|
|
iw, err := NewWriter(context.Background(), fn)
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
testutil.Ok(t, err)
|
|
|
|
|
|
|
|
// Create a label in the index which has 999 values.
|
|
|
|
symbols := map[string]struct{}{}
|
|
|
|
series := []labels.Labels{}
|
|
|
|
for i := 1; i < 1000; i++ {
|
|
|
|
v := fmt.Sprintf("%03d", i)
|
|
|
|
series = append(series, labels.FromStrings("i", v, "foo", "bar"))
|
|
|
|
symbols[v] = struct{}{}
|
|
|
|
}
|
|
|
|
symbols["i"] = struct{}{}
|
|
|
|
symbols["foo"] = struct{}{}
|
|
|
|
symbols["bar"] = struct{}{}
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
syms := []string{}
|
|
|
|
for s := range symbols {
|
|
|
|
syms = append(syms, s)
|
|
|
|
}
|
|
|
|
sort.Strings(syms)
|
|
|
|
for _, s := range syms {
|
|
|
|
testutil.Ok(t, iw.AddSymbol(s))
|
|
|
|
}
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
|
|
|
|
for i, s := range series {
|
|
|
|
testutil.Ok(t, iw.AddSeries(uint64(i), s))
|
|
|
|
}
|
2019-12-11 09:20:41 -08:00
|
|
|
err = iw.WriteLabelIndex([]string{"foo"}, []string{"bar"})
|
Coalesce series reads where we can.
When compacting rather than doing a read of all
series in the index per label name, do many at once
but only when it won't use (much) more ram than writing the
special all index does.
original in-memory postings:
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 1 1202383447 ns/op 158936496 B/op 1031511 allocs/op
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 1 1141792706 ns/op 154453408 B/op 1093453 allocs/op
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 1 1169288829 ns/op 161072336 B/op 1110021 allocs/op
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 1 1115700103 ns/op 149480472 B/op 1129180 allocs/op
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 1 1283813141 ns/op 162937800 B/op 1202771 allocs/op
before:
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 1 1145195941 ns/op 131749984 B/op 834400 allocs/op
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 1 1233526345 ns/op 127889416 B/op 897033 allocs/op
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 1 1821942296 ns/op 131665648 B/op 914836 allocs/op
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 1 8035568665 ns/op 123811832 B/op 934312 allocs/op
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 1 71325926267 ns/op 140722648 B/op 1016824 allocs/op
after:
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 1 1101429174 ns/op 129063496 B/op 832571 allocs/op
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 1 1074466374 ns/op 124154888 B/op 894875 allocs/op
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 1 1166510282 ns/op 128790648 B/op 912931 allocs/op
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 1 1075013071 ns/op 120570696 B/op 933511 allocs/op
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 1 1231673790 ns/op 138754288 B/op 1022791 allocs/op
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-11 13:24:03 -08:00
|
|
|
testutil.Ok(t, err)
|
Reduce memory used by postings offset table.
Rather than keeping the offset of each postings list, instead
keep the nth offset of the offset of the posting list. As postings
list offsets have always been sorted, we can then get to the closest
entry before the one we want an iterate forwards.
I haven't done much tuning on the 32 number, it was chosen to try
not to read through more than a 4k page of data.
Switch to a bulk interface for fetching postings. Use it to avoid having
to re-read parts of the posting offset table when querying lots of it.
For a index with what BenchmarkHeadPostingForMatchers uses RAM
for r.postings drops from 3.79MB to 80.19kB or about 48x.
Bytes allocated go down by 30%, and suprisingly CPU usage drops by
4-6% for typical queries too.
benchmark old ns/op new ns/op delta
BenchmarkPostingsForMatchers/Block/n="1"-4 35231 36673 +4.09%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 563380 540627 -4.04%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 536782 534186 -0.48%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 533990 541550 +1.42%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 113374598 117969608 +4.05%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 146329884 139651442 -4.56%
BenchmarkPostingsForMatchers/Block/i=~""-4 50346510 44961127 -10.70%
BenchmarkPostingsForMatchers/Block/i!=""-4 41261550 35356165 -14.31%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 112544418 116904010 +3.87%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 112487086 116864918 +3.89%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 41094758 35457904 -13.72%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 41906372 36151473 -13.73%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 147262414 140424800 -4.64%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 28615629 27872072 -2.60%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 147117177 140462403 -4.52%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 175096826 167902298 -4.11%
benchmark old allocs new allocs delta
BenchmarkPostingsForMatchers/Block/n="1"-4 4 6 +50.00%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 7 11 +57.14%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 15 17 +13.33%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 100010 100012 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 200069 200040 -0.01%
BenchmarkPostingsForMatchers/Block/i=~""-4 200072 200045 -0.01%
BenchmarkPostingsForMatchers/Block/i!=""-4 200070 200041 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 100013 100017 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 100017 100023 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 200073 200046 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 200075 200050 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 200074 200049 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 111165 111150 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 200078 200055 -0.01%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 311282 311238 -0.01%
benchmark old bytes new bytes delta
BenchmarkPostingsForMatchers/Block/n="1"-4 264 296 +12.12%
BenchmarkPostingsForMatchers/Block/n="1",j="foo"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/j="foo",n="1"-4 360 424 +17.78%
BenchmarkPostingsForMatchers/Block/n="1",j!="foo"-4 520 552 +6.15%
BenchmarkPostingsForMatchers/Block/i=~".*"-4 1600461 1600482 +0.00%
BenchmarkPostingsForMatchers/Block/i=~".+"-4 24900801 17259077 -30.69%
BenchmarkPostingsForMatchers/Block/i=~""-4 24900836 17259151 -30.69%
BenchmarkPostingsForMatchers/Block/i!=""-4 24900760 17259048 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",j="foo"-4 1600557 1600621 +0.00%
BenchmarkPostingsForMatchers/Block/n="1",i=~".*",i!="2",j="foo"-4 1600717 1600813 +0.01%
BenchmarkPostingsForMatchers/Block/n="1",i!=""-4 24900856 17259176 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i!="",j="foo"-4 24900952 17259304 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",j="foo"-4 24900993 17259333 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~"1.+",j="foo"-4 3788311 3142630 -17.04%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!="2",j="foo"-4 24901137 17259509 -30.69%
BenchmarkPostingsForMatchers/Block/n="1",i=~".+",i!~"2.*",j="foo"-4 28693086 20405680 -28.88%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-05 10:27:40 -08:00
|
|
|
testutil.Ok(t, iw.Close())
|
|
|
|
|
|
|
|
ir, err := NewFileReader(fn)
|
|
|
|
testutil.Ok(t, err)
|
|
|
|
|
|
|
|
cases := []struct {
|
|
|
|
in []string
|
|
|
|
}{
|
|
|
|
// Simple cases, everything is present.
|
|
|
|
{in: []string{"002"}},
|
|
|
|
{in: []string{"031", "032", "033"}},
|
|
|
|
{in: []string{"032", "033"}},
|
|
|
|
{in: []string{"127", "128"}},
|
|
|
|
{in: []string{"127", "128", "129"}},
|
|
|
|
{in: []string{"127", "129"}},
|
|
|
|
{in: []string{"128", "129"}},
|
|
|
|
{in: []string{"998", "999"}},
|
|
|
|
{in: []string{"999"}},
|
|
|
|
// Before actual values.
|
|
|
|
{in: []string{"000"}},
|
|
|
|
{in: []string{"000", "001"}},
|
|
|
|
{in: []string{"000", "002"}},
|
|
|
|
// After actual values.
|
|
|
|
{in: []string{"999a"}},
|
|
|
|
{in: []string{"999", "999a"}},
|
|
|
|
{in: []string{"998", "999", "999a"}},
|
|
|
|
// In the middle of actual values.
|
|
|
|
{in: []string{"126a", "127", "128"}},
|
|
|
|
{in: []string{"127", "127a", "128"}},
|
|
|
|
{in: []string{"127", "127a", "128", "128a", "129"}},
|
|
|
|
{in: []string{"127", "128a", "129"}},
|
|
|
|
{in: []string{"128", "128a", "129"}},
|
|
|
|
{in: []string{"128", "129", "129a"}},
|
|
|
|
{in: []string{"126a", "126b", "127", "127a", "127b", "128", "128a", "128b", "129", "129a", "129b"}},
|
|
|
|
}
|
|
|
|
|
|
|
|
for _, c := range cases {
|
|
|
|
it, err := ir.Postings("i", c.in...)
|
|
|
|
testutil.Ok(t, err)
|
|
|
|
|
|
|
|
got := []string{}
|
|
|
|
var lbls labels.Labels
|
|
|
|
var metas []chunks.Meta
|
|
|
|
for it.Next() {
|
|
|
|
testutil.Ok(t, ir.Series(it.At(), &lbls, &metas))
|
|
|
|
got = append(got, lbls.Get("i"))
|
|
|
|
}
|
|
|
|
testutil.Ok(t, it.Err())
|
|
|
|
exp := []string{}
|
|
|
|
for _, e := range c.in {
|
|
|
|
if _, ok := symbols[e]; ok && e != "l" {
|
|
|
|
exp = append(exp, e)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
testutil.Equals(t, exp, got, fmt.Sprintf("input: %v", c.in))
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2017-03-14 07:24:08 -07:00
|
|
|
func TestPersistence_index_e2e(t *testing.T) {
|
|
|
|
dir, err := ioutil.TempDir("", "test_persistence_e2e")
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2019-03-19 06:31:57 -07:00
|
|
|
defer func() {
|
|
|
|
testutil.Ok(t, os.RemoveAll(dir))
|
|
|
|
}()
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2018-10-25 02:32:57 -07:00
|
|
|
lbls, err := labels.ReadLabels(filepath.Join("..", "testdata", "20kseries.json"), 20000)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
// Sort labels as the index writer expects series in sorted order.
|
|
|
|
sort.Sort(labels.Slice(lbls))
|
|
|
|
|
|
|
|
symbols := map[string]struct{}{}
|
|
|
|
for _, lset := range lbls {
|
|
|
|
for _, l := range lset {
|
|
|
|
symbols[l.Name] = struct{}{}
|
|
|
|
symbols[l.Value] = struct{}{}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-03-14 07:24:08 -07:00
|
|
|
var input indexWriterSeriesSlice
|
|
|
|
|
|
|
|
// Generate ChunkMetas for every label set.
|
|
|
|
for i, lset := range lbls {
|
2017-11-30 06:34:49 -08:00
|
|
|
var metas []chunks.Meta
|
2017-03-14 07:24:08 -07:00
|
|
|
|
|
|
|
for j := 0; j <= (i % 20); j++ {
|
2017-11-30 06:34:49 -08:00
|
|
|
metas = append(metas, chunks.Meta{
|
2017-03-14 07:24:08 -07:00
|
|
|
MinTime: int64(j * 10000),
|
|
|
|
MaxTime: int64((j + 1) * 10000),
|
|
|
|
Ref: rand.Uint64(),
|
2017-11-30 06:34:49 -08:00
|
|
|
Chunk: chunkenc.NewXORChunk(),
|
2017-03-14 07:24:08 -07:00
|
|
|
})
|
|
|
|
}
|
|
|
|
input = append(input, &indexWriterSeries{
|
|
|
|
labels: lset,
|
|
|
|
chunks: metas,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2019-12-16 09:24:48 -08:00
|
|
|
iw, err := NewWriter(context.Background(), filepath.Join(dir, indexFilename))
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
syms := []string{}
|
|
|
|
for s := range symbols {
|
|
|
|
syms = append(syms, s)
|
|
|
|
}
|
|
|
|
sort.Strings(syms)
|
|
|
|
for _, s := range syms {
|
|
|
|
testutil.Ok(t, iw.AddSymbol(s))
|
|
|
|
}
|
2017-08-05 04:31:48 -07:00
|
|
|
|
2017-03-14 07:24:08 -07:00
|
|
|
// Population procedure as done by compaction.
|
|
|
|
var (
|
2017-11-30 06:34:49 -08:00
|
|
|
postings = NewMemPostings()
|
|
|
|
values = map[string]map[string]struct{}{}
|
2017-03-14 07:24:08 -07:00
|
|
|
)
|
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
mi := newMockIndex()
|
|
|
|
|
2017-03-14 07:24:08 -07:00
|
|
|
for i, s := range input {
|
2017-09-04 07:08:38 -07:00
|
|
|
err = iw.AddSeries(uint64(i), s.labels, s.chunks...)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2019-04-25 03:07:04 -07:00
|
|
|
testutil.Ok(t, mi.AddSeries(uint64(i), s.labels, s.chunks...))
|
2017-03-14 07:24:08 -07:00
|
|
|
|
|
|
|
for _, l := range s.labels {
|
|
|
|
valset, ok := values[l.Name]
|
|
|
|
if !ok {
|
2017-11-30 06:34:49 -08:00
|
|
|
valset = map[string]struct{}{}
|
2017-03-14 07:24:08 -07:00
|
|
|
values[l.Name] = valset
|
|
|
|
}
|
2017-11-30 06:34:49 -08:00
|
|
|
valset[l.Value] = struct{}{}
|
2017-03-14 07:24:08 -07:00
|
|
|
}
|
2017-11-30 06:34:49 -08:00
|
|
|
postings.Add(uint64(i), s.labels)
|
2017-03-14 07:24:08 -07:00
|
|
|
}
|
2017-04-08 08:42:04 -07:00
|
|
|
|
|
|
|
for k, v := range values {
|
2017-12-21 02:55:58 -08:00
|
|
|
var vals []string
|
|
|
|
for e := range v {
|
|
|
|
vals = append(vals, e)
|
|
|
|
}
|
|
|
|
sort.Strings(vals)
|
2017-04-08 08:42:04 -07:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, iw.WriteLabelIndex([]string{k}, vals))
|
|
|
|
testutil.Ok(t, mi.WriteLabelIndex([]string{k}, vals))
|
2017-04-08 08:42:04 -07:00
|
|
|
}
|
|
|
|
|
2017-03-14 07:24:08 -07:00
|
|
|
err = iw.Close()
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2019-01-29 00:32:32 -08:00
|
|
|
ir, err := NewFileReader(filepath.Join(dir, indexFilename))
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-11-30 06:34:49 -08:00
|
|
|
for p := range mi.postings {
|
2017-09-05 02:45:18 -07:00
|
|
|
gotp, err := ir.Postings(p.Name, p.Value)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-09-05 02:45:18 -07:00
|
|
|
expp, err := mi.Postings(p.Name, p.Value)
|
2019-01-02 08:48:42 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-08-05 04:31:48 -07:00
|
|
|
|
|
|
|
var lset, explset labels.Labels
|
2017-11-30 06:34:49 -08:00
|
|
|
var chks, expchks []chunks.Meta
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
for gotp.Next() {
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Assert(t, expp.Next() == true, "")
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-03-29 16:18:41 -07:00
|
|
|
ref := gotp.At()
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
err := ir.Series(ref, &lset, &chks)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-08-05 04:31:48 -07:00
|
|
|
err = mi.Series(expp.At(), &explset, &expchks)
|
2019-01-02 08:48:42 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Equals(t, explset, lset)
|
|
|
|
testutil.Equals(t, expchks, chks)
|
2017-03-29 16:18:41 -07:00
|
|
|
}
|
2019-12-11 09:20:41 -08:00
|
|
|
testutil.Assert(t, expp.Next() == false, "Expected no more postings for %q=%q", p.Name, p.Value)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, gotp.Err())
|
2017-03-14 07:24:08 -07:00
|
|
|
}
|
|
|
|
|
2017-04-08 08:42:04 -07:00
|
|
|
for k, v := range mi.labelIndex {
|
2017-12-21 02:55:58 -08:00
|
|
|
tplsExp, err := NewStringTuples(v, 1)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-04-08 08:42:04 -07:00
|
|
|
|
|
|
|
tplsRes, err := ir.LabelValues(k)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-03-14 07:24:08 -07:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Equals(t, tplsExp.Len(), tplsRes.Len())
|
2017-04-08 08:42:04 -07:00
|
|
|
for i := 0; i < tplsExp.Len(); i++ {
|
|
|
|
strsExp, err := tplsExp.At(i)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-04-08 08:42:04 -07:00
|
|
|
|
|
|
|
strsRes, err := tplsRes.At(i)
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, err)
|
2017-04-08 08:42:04 -07:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Equals(t, strsExp, strsRes)
|
2017-04-08 08:42:04 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
gotSymbols := []string{}
|
|
|
|
it := ir.Symbols()
|
|
|
|
for it.Next() {
|
|
|
|
gotSymbols = append(gotSymbols, it.At())
|
|
|
|
}
|
|
|
|
testutil.Ok(t, it.Err())
|
|
|
|
expSymbols := []string{}
|
2019-01-11 09:31:26 -08:00
|
|
|
for s := range mi.symbols {
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
expSymbols = append(expSymbols, s)
|
2019-01-11 09:31:26 -08:00
|
|
|
}
|
Stream symbols during compaction. (#6468)
Rather than buffer up symbols in RAM, do it one by one
during compaction. Then use the reader's symbol handling
for symbol lookups during the rest of the index write.
There is some slowdown in compaction, due to having to look through a file
rather than a hash lookup. This is noise to the overall cost of compacting
series with thousands of samples though.
benchmark old ns/op new ns/op delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 539917175 675341565 +25.08%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 2441815993 2477453524 +1.46%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3978543559 3922909687 -1.40%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 8430219716 8586610007 +1.86%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 1786424591 1909552782 +6.89%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 5328998202 6020839950 +12.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 10085059958 11085278690 +9.92%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 25497010155 27018079806 +5.97%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 2427391406 2817217987 +16.06%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 2592965497 2538805050 -2.09%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 2437388343 2668012858 +9.46%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 2317095324 2787423966 +20.30%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 2600239857 2096973860 -19.35%
benchmark old allocs new allocs delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 500851 470794 -6.00%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 821527 791451 -3.66%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 1141562 1111508 -2.63%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 2141576 2111504 -1.40%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 871466 841424 -3.45%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 1941428 1911415 -1.55%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 3071573 3041510 -0.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 6771648 6741509 -0.45%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 731493 824888 +12.77%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 793918 887311 +11.76%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 811842 905204 +11.50%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 832244 925081 +11.16%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 921553 1019162 +10.59%
benchmark old bytes new bytes delta
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 40532648 35698276 -11.93%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 60340216 53409568 -11.49%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 81087336 72065552 -11.13%
BenchmarkCompaction/type=normal,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 142485576 120878544 -15.16%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=101-4 208661368 203831136 -2.31%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=1001-4 347345904 340484696 -1.98%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=2001-4 585185856 576244648 -1.53%
BenchmarkCompaction/type=vertical,blocks=4,series=10000,samplesPerSeriesPerBlock=5001-4 1357641792 1358966528 +0.10%
BenchmarkCompactionFromHead/labelnames=1,labelvalues=100000-4 126486664 119666744 -5.39%
BenchmarkCompactionFromHead/labelnames=10,labelvalues=10000-4 122323192 115117224 -5.89%
BenchmarkCompactionFromHead/labelnames=100,labelvalues=1000-4 126404504 119469864 -5.49%
BenchmarkCompactionFromHead/labelnames=1000,labelvalues=100-4 119047832 112230408 -5.73%
BenchmarkCompactionFromHead/labelnames=10000,labelvalues=10-4 136576016 116634800 -14.60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-12-17 11:49:54 -08:00
|
|
|
sort.Strings(expSymbols)
|
|
|
|
testutil.Equals(t, expSymbols, gotSymbols)
|
2019-01-11 09:31:26 -08:00
|
|
|
|
2017-12-06 17:06:14 -08:00
|
|
|
testutil.Ok(t, ir.Close())
|
2017-03-14 07:24:08 -07:00
|
|
|
}
|
2018-06-25 02:25:22 -07:00
|
|
|
|
2019-01-11 09:31:26 -08:00
|
|
|
func TestDecbufUvariantWithInvalidBuffer(t *testing.T) {
|
2018-06-25 02:25:22 -07:00
|
|
|
b := realByteSlice([]byte{0x81, 0x81, 0x81, 0x81, 0x81, 0x81})
|
|
|
|
|
2019-02-22 09:11:11 -08:00
|
|
|
db := encoding.NewDecbufUvarintAt(b, 0, castagnoliTable)
|
|
|
|
testutil.NotOk(t, db.Err())
|
2018-06-25 02:25:22 -07:00
|
|
|
}
|
2019-01-11 09:31:26 -08:00
|
|
|
|
|
|
|
func TestReaderWithInvalidBuffer(t *testing.T) {
|
|
|
|
b := realByteSlice([]byte{0x81, 0x81, 0x81, 0x81, 0x81, 0x81})
|
|
|
|
|
|
|
|
_, err := NewReader(b)
|
|
|
|
testutil.NotOk(t, err)
|
|
|
|
}
|
2019-04-03 01:34:04 -07:00
|
|
|
|
|
|
|
// TestNewFileReaderErrorNoOpenFiles ensures that in case of an error no file remains open.
|
|
|
|
func TestNewFileReaderErrorNoOpenFiles(t *testing.T) {
|
|
|
|
dir := testutil.NewTemporaryDirectory("block", t)
|
|
|
|
|
|
|
|
idxName := filepath.Join(dir.Path(), "index")
|
|
|
|
err := ioutil.WriteFile(idxName, []byte("corrupted contents"), 0644)
|
|
|
|
testutil.Ok(t, err)
|
|
|
|
|
|
|
|
_, err = NewFileReader(idxName)
|
|
|
|
testutil.NotOk(t, err)
|
|
|
|
|
|
|
|
// dir.Close will fail on Win if idxName fd is not closed on error path.
|
|
|
|
dir.Close()
|
|
|
|
}
|