mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-03 18:07:27 -08:00
760 lines
22 KiB
Go
760 lines
22 KiB
Go
|
// Copyright 2022 The Prometheus Authors
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package chunkenc
|
||
|
|
||
|
import (
|
||
|
"encoding/binary"
|
||
|
"math"
|
||
|
|
||
|
"github.com/prometheus/prometheus/model/histogram"
|
||
|
"github.com/prometheus/prometheus/model/value"
|
||
|
)
|
||
|
|
||
|
// FloatHistogramChunk holds encoded sample data for a sparse, high-resolution
|
||
|
// float histogram.
|
||
|
//
|
||
|
// Each sample has multiple "fields", stored in the following way (raw = store
|
||
|
// number directly, delta = store delta to the previous number, dod = store
|
||
|
// delta of the delta to the previous number, xor = what we do for regular
|
||
|
// sample values):
|
||
|
//
|
||
|
// field → ts count zeroCount sum []posbuckets []negbuckets
|
||
|
// sample 1 raw raw raw raw []raw []raw
|
||
|
// sample 2 delta xor xor xor []xor []xor
|
||
|
// sample >2 dod xor xor xor []xor []xor
|
||
|
type FloatHistogramChunk struct {
|
||
|
b bstream
|
||
|
}
|
||
|
|
||
|
// NewFloatHistogramChunk returns a new chunk with float histogram encoding.
|
||
|
func NewFloatHistogramChunk() *FloatHistogramChunk {
|
||
|
b := make([]byte, 3, 128)
|
||
|
return &FloatHistogramChunk{b: bstream{stream: b, count: 0}}
|
||
|
}
|
||
|
|
||
|
// xorValue holds all the necessary information to encode
|
||
|
// and decode XOR encoded float64 values.
|
||
|
type xorValue struct {
|
||
|
value float64
|
||
|
leading uint8
|
||
|
trailing uint8
|
||
|
}
|
||
|
|
||
|
// Encoding returns the encoding type.
|
||
|
func (c *FloatHistogramChunk) Encoding() Encoding {
|
||
|
return EncFloatHistogram
|
||
|
}
|
||
|
|
||
|
// Bytes returns the underlying byte slice of the chunk.
|
||
|
func (c *FloatHistogramChunk) Bytes() []byte {
|
||
|
return c.b.bytes()
|
||
|
}
|
||
|
|
||
|
// NumSamples returns the number of samples in the chunk.
|
||
|
func (c *FloatHistogramChunk) NumSamples() int {
|
||
|
return int(binary.BigEndian.Uint16(c.Bytes()))
|
||
|
}
|
||
|
|
||
|
// Layout returns the histogram layout. Only call this on chunks that have at
|
||
|
// least one sample.
|
||
|
func (c *FloatHistogramChunk) Layout() (
|
||
|
schema int32, zeroThreshold float64,
|
||
|
negativeSpans, positiveSpans []histogram.Span,
|
||
|
err error,
|
||
|
) {
|
||
|
if c.NumSamples() == 0 {
|
||
|
panic("FloatHistogramChunk.Layout() called on an empty chunk")
|
||
|
}
|
||
|
b := newBReader(c.Bytes()[2:])
|
||
|
return readHistogramChunkLayout(&b)
|
||
|
}
|
||
|
|
||
|
// SetCounterResetHeader sets the counter reset header.
|
||
|
func (c *FloatHistogramChunk) SetCounterResetHeader(h CounterResetHeader) {
|
||
|
setCounterResetHeader(h, c.Bytes())
|
||
|
}
|
||
|
|
||
|
// GetCounterResetHeader returns the info about the first 2 bits of the chunk
|
||
|
// header.
|
||
|
func (c *FloatHistogramChunk) GetCounterResetHeader() CounterResetHeader {
|
||
|
return CounterResetHeader(c.Bytes()[2] & 0b11000000)
|
||
|
}
|
||
|
|
||
|
// Compact implements the Chunk interface.
|
||
|
func (c *FloatHistogramChunk) Compact() {
|
||
|
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold {
|
||
|
buf := make([]byte, l)
|
||
|
copy(buf, c.b.stream)
|
||
|
c.b.stream = buf
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Appender implements the Chunk interface.
|
||
|
func (c *FloatHistogramChunk) Appender() (Appender, error) {
|
||
|
it := c.iterator(nil)
|
||
|
|
||
|
// To get an appender, we must know the state it would have if we had
|
||
|
// appended all existing data from scratch. We iterate through the end
|
||
|
// and populate via the iterator's state.
|
||
|
for it.Next() == ValFloatHistogram {
|
||
|
}
|
||
|
if err := it.Err(); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
pBuckets := make([]xorValue, len(it.pBuckets))
|
||
|
for i := 0; i < len(it.pBuckets); i++ {
|
||
|
pBuckets[i] = xorValue{
|
||
|
value: it.pBuckets[i],
|
||
|
leading: it.pBucketsLeading[i],
|
||
|
trailing: it.pBucketsTrailing[i],
|
||
|
}
|
||
|
}
|
||
|
nBuckets := make([]xorValue, len(it.nBuckets))
|
||
|
for i := 0; i < len(it.nBuckets); i++ {
|
||
|
nBuckets[i] = xorValue{
|
||
|
value: it.nBuckets[i],
|
||
|
leading: it.nBucketsLeading[i],
|
||
|
trailing: it.nBucketsTrailing[i],
|
||
|
}
|
||
|
}
|
||
|
|
||
|
a := &FloatHistogramAppender{
|
||
|
b: &c.b,
|
||
|
|
||
|
schema: it.schema,
|
||
|
zThreshold: it.zThreshold,
|
||
|
pSpans: it.pSpans,
|
||
|
nSpans: it.nSpans,
|
||
|
t: it.t,
|
||
|
tDelta: it.tDelta,
|
||
|
cnt: it.cnt,
|
||
|
zCnt: it.zCnt,
|
||
|
pBuckets: pBuckets,
|
||
|
nBuckets: nBuckets,
|
||
|
sum: it.sum,
|
||
|
}
|
||
|
if it.numTotal == 0 {
|
||
|
a.sum.leading = 0xff
|
||
|
a.cnt.leading = 0xff
|
||
|
a.zCnt.leading = 0xff
|
||
|
}
|
||
|
return a, nil
|
||
|
}
|
||
|
|
||
|
func (c *FloatHistogramChunk) iterator(it Iterator) *floatHistogramIterator {
|
||
|
// This comment is copied from XORChunk.iterator:
|
||
|
// Should iterators guarantee to act on a copy of the data so it doesn't lock append?
|
||
|
// When using striped locks to guard access to chunks, probably yes.
|
||
|
// Could only copy data if the chunk is not completed yet.
|
||
|
if histogramIter, ok := it.(*floatHistogramIterator); ok {
|
||
|
histogramIter.Reset(c.b.bytes())
|
||
|
return histogramIter
|
||
|
}
|
||
|
return newFloatHistogramIterator(c.b.bytes())
|
||
|
}
|
||
|
|
||
|
func newFloatHistogramIterator(b []byte) *floatHistogramIterator {
|
||
|
it := &floatHistogramIterator{
|
||
|
br: newBReader(b),
|
||
|
numTotal: binary.BigEndian.Uint16(b),
|
||
|
t: math.MinInt64,
|
||
|
}
|
||
|
// The first 3 bytes contain chunk headers.
|
||
|
// We skip that for actual samples.
|
||
|
_, _ = it.br.readBits(24)
|
||
|
return it
|
||
|
}
|
||
|
|
||
|
// Iterator implements the Chunk interface.
|
||
|
func (c *FloatHistogramChunk) Iterator(it Iterator) Iterator {
|
||
|
return c.iterator(it)
|
||
|
}
|
||
|
|
||
|
// FloatHistogramAppender is an Appender implementation for float histograms.
|
||
|
type FloatHistogramAppender struct {
|
||
|
b *bstream
|
||
|
|
||
|
// Layout:
|
||
|
schema int32
|
||
|
zThreshold float64
|
||
|
pSpans, nSpans []histogram.Span
|
||
|
|
||
|
t, tDelta int64
|
||
|
sum, cnt, zCnt xorValue
|
||
|
pBuckets, nBuckets []xorValue
|
||
|
}
|
||
|
|
||
|
// Append implements Appender. This implementation panics because normal float
|
||
|
// samples must never be appended to a histogram chunk.
|
||
|
func (a *FloatHistogramAppender) Append(int64, float64) {
|
||
|
panic("appended a float sample to a histogram chunk")
|
||
|
}
|
||
|
|
||
|
// AppendHistogram implements Appender. This implementation panics because integer
|
||
|
// histogram samples must never be appended to a float histogram chunk.
|
||
|
func (a *FloatHistogramAppender) AppendHistogram(int64, *histogram.Histogram) {
|
||
|
panic("appended an integer histogram to a float histogram chunk")
|
||
|
}
|
||
|
|
||
|
// Appendable returns whether the chunk can be appended to, and if so
|
||
|
// whether any recoding needs to happen using the provided interjections
|
||
|
// (in case of any new buckets, positive or negative range, respectively).
|
||
|
//
|
||
|
// The chunk is not appendable in the following cases:
|
||
|
//
|
||
|
// • The schema has changed.
|
||
|
//
|
||
|
// • The threshold for the zero bucket has changed.
|
||
|
//
|
||
|
// • Any buckets have disappeared.
|
||
|
//
|
||
|
// • There was a counter reset in the count of observations or in any bucket,
|
||
|
// including the zero bucket.
|
||
|
//
|
||
|
// • The last sample in the chunk was stale while the current sample is not stale.
|
||
|
//
|
||
|
// The method returns an additional boolean set to true if it is not appendable
|
||
|
// because of a counter reset. If the given sample is stale, it is always ok to
|
||
|
// append. If counterReset is true, okToAppend is always false.
|
||
|
func (a *FloatHistogramAppender) Appendable(h *histogram.FloatHistogram) (
|
||
|
positiveInterjections, negativeInterjections []Interjection,
|
||
|
okToAppend, counterReset bool,
|
||
|
) {
|
||
|
if value.IsStaleNaN(h.Sum) {
|
||
|
// This is a stale sample whose buckets and spans don't matter.
|
||
|
okToAppend = true
|
||
|
return
|
||
|
}
|
||
|
if value.IsStaleNaN(a.sum.value) {
|
||
|
// If the last sample was stale, then we can only accept stale
|
||
|
// samples in this chunk.
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if h.Count < a.cnt.value {
|
||
|
// There has been a counter reset.
|
||
|
counterReset = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if h.ZeroCount < a.zCnt.value {
|
||
|
// There has been a counter reset since ZeroThreshold didn't change.
|
||
|
counterReset = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
var ok bool
|
||
|
positiveInterjections, ok = compareSpans(a.pSpans, h.PositiveSpans)
|
||
|
if !ok {
|
||
|
counterReset = true
|
||
|
return
|
||
|
}
|
||
|
negativeInterjections, ok = compareSpans(a.nSpans, h.NegativeSpans)
|
||
|
if !ok {
|
||
|
counterReset = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
if counterResetInAnyFloatBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) ||
|
||
|
counterResetInAnyFloatBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) {
|
||
|
counterReset, positiveInterjections, negativeInterjections = true, nil, nil
|
||
|
return
|
||
|
}
|
||
|
|
||
|
okToAppend = true
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// counterResetInAnyFloatBucket returns true if there was a counter reset for any
|
||
|
// bucket. This should be called only when the bucket layout is the same or new
|
||
|
// buckets were added. It does not handle the case of buckets missing.
|
||
|
func counterResetInAnyFloatBucket(oldBuckets []xorValue, newBuckets []float64, oldSpans, newSpans []histogram.Span) bool {
|
||
|
if len(oldSpans) == 0 || len(oldBuckets) == 0 {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices.
|
||
|
oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span.
|
||
|
oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset
|
||
|
|
||
|
oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice.
|
||
|
oldVal, newVal := oldBuckets[0].value, newBuckets[0]
|
||
|
|
||
|
// Since we assume that new spans won't have missing buckets, there will never be a case
|
||
|
// where the old index will not find a matching new index.
|
||
|
for {
|
||
|
if oldIdx == newIdx {
|
||
|
if newVal < oldVal {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if oldIdx <= newIdx {
|
||
|
// Moving ahead old bucket and span by 1 index.
|
||
|
if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 {
|
||
|
// Current span is over.
|
||
|
oldSpanSliceIdx++
|
||
|
oldInsideSpanIdx = 0
|
||
|
if oldSpanSliceIdx >= len(oldSpans) {
|
||
|
// All old spans are over.
|
||
|
break
|
||
|
}
|
||
|
oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset
|
||
|
} else {
|
||
|
oldInsideSpanIdx++
|
||
|
oldIdx++
|
||
|
}
|
||
|
oldBucketSliceIdx++
|
||
|
oldVal = oldBuckets[oldBucketSliceIdx].value
|
||
|
}
|
||
|
|
||
|
if oldIdx > newIdx {
|
||
|
// Moving ahead new bucket and span by 1 index.
|
||
|
if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 {
|
||
|
// Current span is over.
|
||
|
newSpanSliceIdx++
|
||
|
newInsideSpanIdx = 0
|
||
|
if newSpanSliceIdx >= len(newSpans) {
|
||
|
// All new spans are over.
|
||
|
// This should not happen, old spans above should catch this first.
|
||
|
panic("new spans over before old spans in counterReset")
|
||
|
}
|
||
|
newIdx += 1 + newSpans[newSpanSliceIdx].Offset
|
||
|
} else {
|
||
|
newInsideSpanIdx++
|
||
|
newIdx++
|
||
|
}
|
||
|
newBucketSliceIdx++
|
||
|
newVal = newBuckets[newBucketSliceIdx]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// AppendFloatHistogram appends a float histogram to the chunk. The caller must ensure that
|
||
|
// the histogram is properly structured, e.g. the number of buckets used
|
||
|
// corresponds to the number conveyed by the span structures. First call
|
||
|
// Appendable() and act accordingly!
|
||
|
func (a *FloatHistogramAppender) AppendFloatHistogram(t int64, h *histogram.FloatHistogram) {
|
||
|
var tDelta int64
|
||
|
num := binary.BigEndian.Uint16(a.b.bytes())
|
||
|
|
||
|
if value.IsStaleNaN(h.Sum) {
|
||
|
// Emptying out other fields to write no buckets, and an empty
|
||
|
// layout in case of first histogram in the chunk.
|
||
|
h = &histogram.FloatHistogram{Sum: h.Sum}
|
||
|
}
|
||
|
|
||
|
if num == 0 {
|
||
|
// The first append gets the privilege to dictate the layout
|
||
|
// but it's also responsible for encoding it into the chunk!
|
||
|
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans)
|
||
|
a.schema = h.Schema
|
||
|
a.zThreshold = h.ZeroThreshold
|
||
|
|
||
|
if len(h.PositiveSpans) > 0 {
|
||
|
a.pSpans = make([]histogram.Span, len(h.PositiveSpans))
|
||
|
copy(a.pSpans, h.PositiveSpans)
|
||
|
} else {
|
||
|
a.pSpans = nil
|
||
|
}
|
||
|
if len(h.NegativeSpans) > 0 {
|
||
|
a.nSpans = make([]histogram.Span, len(h.NegativeSpans))
|
||
|
copy(a.nSpans, h.NegativeSpans)
|
||
|
} else {
|
||
|
a.nSpans = nil
|
||
|
}
|
||
|
|
||
|
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans)
|
||
|
if numPBuckets > 0 {
|
||
|
a.pBuckets = make([]xorValue, numPBuckets)
|
||
|
for i := 0; i < numPBuckets; i++ {
|
||
|
a.pBuckets[i] = xorValue{
|
||
|
value: h.PositiveBuckets[i],
|
||
|
leading: 0xff,
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
a.pBuckets = nil
|
||
|
}
|
||
|
if numNBuckets > 0 {
|
||
|
a.nBuckets = make([]xorValue, numNBuckets)
|
||
|
for i := 0; i < numNBuckets; i++ {
|
||
|
a.nBuckets[i] = xorValue{
|
||
|
value: h.NegativeBuckets[i],
|
||
|
leading: 0xff,
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
a.nBuckets = nil
|
||
|
}
|
||
|
|
||
|
// Now store the actual data.
|
||
|
putVarbitInt(a.b, t)
|
||
|
a.b.writeBits(math.Float64bits(h.Count), 64)
|
||
|
a.b.writeBits(math.Float64bits(h.ZeroCount), 64)
|
||
|
a.b.writeBits(math.Float64bits(h.Sum), 64)
|
||
|
a.cnt.value = h.Count
|
||
|
a.zCnt.value = h.ZeroCount
|
||
|
a.sum.value = h.Sum
|
||
|
for _, b := range h.PositiveBuckets {
|
||
|
a.b.writeBits(math.Float64bits(b), 64)
|
||
|
}
|
||
|
for _, b := range h.NegativeBuckets {
|
||
|
a.b.writeBits(math.Float64bits(b), 64)
|
||
|
}
|
||
|
} else {
|
||
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
|
||
|
// so we don't need a separate single delta logic for the 2nd sample.
|
||
|
tDelta = t - a.t
|
||
|
tDod := tDelta - a.tDelta
|
||
|
putVarbitInt(a.b, tDod)
|
||
|
|
||
|
a.writeXorValue(&a.cnt, h.Count)
|
||
|
a.writeXorValue(&a.zCnt, h.ZeroCount)
|
||
|
a.writeXorValue(&a.sum, h.Sum)
|
||
|
|
||
|
for i, b := range h.PositiveBuckets {
|
||
|
a.writeXorValue(&a.pBuckets[i], b)
|
||
|
}
|
||
|
for i, b := range h.NegativeBuckets {
|
||
|
a.writeXorValue(&a.nBuckets[i], b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
binary.BigEndian.PutUint16(a.b.bytes(), num+1)
|
||
|
|
||
|
a.t = t
|
||
|
a.tDelta = tDelta
|
||
|
}
|
||
|
|
||
|
func (a *FloatHistogramAppender) writeXorValue(old *xorValue, v float64) {
|
||
|
xorWrite(a.b, v, old.value, &old.leading, &old.trailing)
|
||
|
old.value = v
|
||
|
}
|
||
|
|
||
|
// Recode converts the current chunk to accommodate an expansion of the set of
|
||
|
// (positive and/or negative) buckets used, according to the provided
|
||
|
// interjections, resulting in the honoring of the provided new positive and
|
||
|
// negative spans. To continue appending, use the returned Appender rather than
|
||
|
// the receiver of this method.
|
||
|
func (a *FloatHistogramAppender) Recode(
|
||
|
positiveInterjections, negativeInterjections []Interjection,
|
||
|
positiveSpans, negativeSpans []histogram.Span,
|
||
|
) (Chunk, Appender) {
|
||
|
// TODO(beorn7): This currently just decodes everything and then encodes
|
||
|
// it again with the new span layout. This can probably be done in-place
|
||
|
// by editing the chunk. But let's first see how expensive it is in the
|
||
|
// big picture. Also, in-place editing might create concurrency issues.
|
||
|
byts := a.b.bytes()
|
||
|
it := newFloatHistogramIterator(byts)
|
||
|
hc := NewFloatHistogramChunk()
|
||
|
app, err := hc.Appender()
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans)
|
||
|
|
||
|
for it.Next() == ValFloatHistogram {
|
||
|
tOld, hOld := it.AtFloatHistogram()
|
||
|
|
||
|
// We have to newly allocate slices for the modified buckets
|
||
|
// here because they are kept by the appender until the next
|
||
|
// append.
|
||
|
// TODO(beorn7): We might be able to optimize this.
|
||
|
var positiveBuckets, negativeBuckets []float64
|
||
|
if numPositiveBuckets > 0 {
|
||
|
positiveBuckets = make([]float64, numPositiveBuckets)
|
||
|
}
|
||
|
if numNegativeBuckets > 0 {
|
||
|
negativeBuckets = make([]float64, numNegativeBuckets)
|
||
|
}
|
||
|
|
||
|
// Save the modified histogram to the new chunk.
|
||
|
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans
|
||
|
if len(positiveInterjections) > 0 {
|
||
|
hOld.PositiveBuckets = interject(hOld.PositiveBuckets, positiveBuckets, positiveInterjections, false)
|
||
|
}
|
||
|
if len(negativeInterjections) > 0 {
|
||
|
hOld.NegativeBuckets = interject(hOld.NegativeBuckets, negativeBuckets, negativeInterjections, false)
|
||
|
}
|
||
|
app.AppendFloatHistogram(tOld, hOld)
|
||
|
}
|
||
|
|
||
|
hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000))
|
||
|
return hc, app
|
||
|
}
|
||
|
|
||
|
type floatHistogramIterator struct {
|
||
|
br bstreamReader
|
||
|
numTotal uint16
|
||
|
numRead uint16
|
||
|
|
||
|
// Layout:
|
||
|
schema int32
|
||
|
zThreshold float64
|
||
|
pSpans, nSpans []histogram.Span
|
||
|
|
||
|
// For the fields that are tracked as deltas and ultimately dod's.
|
||
|
t int64
|
||
|
tDelta int64
|
||
|
|
||
|
// All Gorilla xor encoded.
|
||
|
sum, cnt, zCnt xorValue
|
||
|
|
||
|
// Buckets are not of type xorValue to avoid creating
|
||
|
// new slices for every AtFloatHistogram call.
|
||
|
pBuckets, nBuckets []float64
|
||
|
pBucketsLeading, nBucketsLeading []uint8
|
||
|
pBucketsTrailing, nBucketsTrailing []uint8
|
||
|
|
||
|
err error
|
||
|
|
||
|
// Track calls to retrieve methods. Once they have been called, we
|
||
|
// cannot recycle the bucket slices anymore because we have returned
|
||
|
// them in the histogram.
|
||
|
atFloatHistogramCalled bool
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) Seek(t int64) ValueType {
|
||
|
if it.err != nil {
|
||
|
return ValNone
|
||
|
}
|
||
|
|
||
|
for t > it.t || it.numRead == 0 {
|
||
|
if it.Next() == ValNone {
|
||
|
return ValNone
|
||
|
}
|
||
|
}
|
||
|
return ValFloatHistogram
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) At() (int64, float64) {
|
||
|
panic("cannot call floatHistogramIterator.At")
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) AtHistogram() (int64, *histogram.Histogram) {
|
||
|
panic("cannot call floatHistogramIterator.AtHistogram")
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
|
||
|
if value.IsStaleNaN(it.sum.value) {
|
||
|
return it.t, &histogram.FloatHistogram{Sum: it.sum.value}
|
||
|
}
|
||
|
it.atFloatHistogramCalled = true
|
||
|
return it.t, &histogram.FloatHistogram{
|
||
|
Count: it.cnt.value,
|
||
|
ZeroCount: it.zCnt.value,
|
||
|
Sum: it.sum.value,
|
||
|
ZeroThreshold: it.zThreshold,
|
||
|
Schema: it.schema,
|
||
|
PositiveSpans: it.pSpans,
|
||
|
NegativeSpans: it.nSpans,
|
||
|
PositiveBuckets: it.pBuckets,
|
||
|
NegativeBuckets: it.nBuckets,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) AtT() int64 {
|
||
|
return it.t
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) Err() error {
|
||
|
return it.err
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) Reset(b []byte) {
|
||
|
// The first 3 bytes contain chunk headers.
|
||
|
// We skip that for actual samples.
|
||
|
it.br = newBReader(b[3:])
|
||
|
it.numTotal = binary.BigEndian.Uint16(b)
|
||
|
it.numRead = 0
|
||
|
|
||
|
it.t, it.tDelta = 0, 0
|
||
|
it.cnt, it.zCnt, it.sum = xorValue{}, xorValue{}, xorValue{}
|
||
|
|
||
|
if it.atFloatHistogramCalled {
|
||
|
it.atFloatHistogramCalled = false
|
||
|
it.pBuckets, it.nBuckets = nil, nil
|
||
|
} else {
|
||
|
it.pBuckets, it.nBuckets = it.pBuckets[:0], it.nBuckets[:0]
|
||
|
}
|
||
|
it.pBucketsLeading, it.pBucketsTrailing = it.pBucketsLeading[:0], it.pBucketsTrailing[:0]
|
||
|
it.nBucketsLeading, it.nBucketsTrailing = it.nBucketsLeading[:0], it.nBucketsTrailing[:0]
|
||
|
|
||
|
it.err = nil
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) Next() ValueType {
|
||
|
if it.err != nil || it.numRead == it.numTotal {
|
||
|
return ValNone
|
||
|
}
|
||
|
|
||
|
if it.numRead == 0 {
|
||
|
// The first read is responsible for reading the chunk layout
|
||
|
// and for initializing fields that depend on it. We give
|
||
|
// counter reset info at chunk level, hence we discard it here.
|
||
|
schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.schema = schema
|
||
|
it.zThreshold = zeroThreshold
|
||
|
it.pSpans, it.nSpans = posSpans, negSpans
|
||
|
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans)
|
||
|
// Allocate bucket slices as needed, recycling existing slices
|
||
|
// in case this iterator was reset and already has slices of a
|
||
|
// sufficient capacity.
|
||
|
if numPBuckets > 0 {
|
||
|
it.pBuckets = append(it.pBuckets, make([]float64, numPBuckets)...)
|
||
|
it.pBucketsLeading = append(it.pBucketsLeading, make([]uint8, numPBuckets)...)
|
||
|
it.pBucketsTrailing = append(it.pBucketsTrailing, make([]uint8, numPBuckets)...)
|
||
|
}
|
||
|
if numNBuckets > 0 {
|
||
|
it.nBuckets = append(it.nBuckets, make([]float64, numNBuckets)...)
|
||
|
it.nBucketsLeading = append(it.nBucketsLeading, make([]uint8, numNBuckets)...)
|
||
|
it.nBucketsTrailing = append(it.nBucketsTrailing, make([]uint8, numNBuckets)...)
|
||
|
}
|
||
|
|
||
|
// Now read the actual data.
|
||
|
t, err := readVarbitInt(&it.br)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.t = t
|
||
|
|
||
|
cnt, err := it.br.readBits(64)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.cnt.value = math.Float64frombits(cnt)
|
||
|
|
||
|
zcnt, err := it.br.readBits(64)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.zCnt.value = math.Float64frombits(zcnt)
|
||
|
|
||
|
sum, err := it.br.readBits(64)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.sum.value = math.Float64frombits(sum)
|
||
|
|
||
|
for i := range it.pBuckets {
|
||
|
v, err := it.br.readBits(64)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.pBuckets[i] = math.Float64frombits(v)
|
||
|
}
|
||
|
for i := range it.nBuckets {
|
||
|
v, err := it.br.readBits(64)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.nBuckets[i] = math.Float64frombits(v)
|
||
|
}
|
||
|
|
||
|
it.numRead++
|
||
|
return ValFloatHistogram
|
||
|
}
|
||
|
|
||
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
|
||
|
// so we don't need a separate single delta logic for the 2nd sample.
|
||
|
|
||
|
// Recycle bucket slices that have not been returned yet. Otherwise, copy them.
|
||
|
// We can always recycle the slices for leading and trailing bits as they are
|
||
|
// never returned to the caller.
|
||
|
if it.atFloatHistogramCalled {
|
||
|
it.atFloatHistogramCalled = false
|
||
|
if len(it.pBuckets) > 0 {
|
||
|
newBuckets := make([]float64, len(it.pBuckets))
|
||
|
copy(newBuckets, it.pBuckets)
|
||
|
it.pBuckets = newBuckets
|
||
|
} else {
|
||
|
it.pBuckets = nil
|
||
|
}
|
||
|
if len(it.nBuckets) > 0 {
|
||
|
newBuckets := make([]float64, len(it.nBuckets))
|
||
|
copy(newBuckets, it.nBuckets)
|
||
|
it.nBuckets = newBuckets
|
||
|
} else {
|
||
|
it.nBuckets = nil
|
||
|
}
|
||
|
}
|
||
|
|
||
|
tDod, err := readVarbitInt(&it.br)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return ValNone
|
||
|
}
|
||
|
it.tDelta = it.tDelta + tDod
|
||
|
it.t += it.tDelta
|
||
|
|
||
|
if ok := it.readXor(&it.cnt.value, &it.cnt.leading, &it.cnt.trailing); !ok {
|
||
|
return ValNone
|
||
|
}
|
||
|
|
||
|
if ok := it.readXor(&it.zCnt.value, &it.zCnt.leading, &it.zCnt.trailing); !ok {
|
||
|
return ValNone
|
||
|
}
|
||
|
|
||
|
if ok := it.readXor(&it.sum.value, &it.sum.leading, &it.sum.trailing); !ok {
|
||
|
return ValNone
|
||
|
}
|
||
|
|
||
|
if value.IsStaleNaN(it.sum.value) {
|
||
|
it.numRead++
|
||
|
return ValFloatHistogram
|
||
|
}
|
||
|
|
||
|
for i := range it.pBuckets {
|
||
|
if ok := it.readXor(&it.pBuckets[i], &it.pBucketsLeading[i], &it.pBucketsTrailing[i]); !ok {
|
||
|
return ValNone
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i := range it.nBuckets {
|
||
|
if ok := it.readXor(&it.nBuckets[i], &it.nBucketsLeading[i], &it.nBucketsTrailing[i]); !ok {
|
||
|
return ValNone
|
||
|
}
|
||
|
}
|
||
|
|
||
|
it.numRead++
|
||
|
return ValFloatHistogram
|
||
|
}
|
||
|
|
||
|
func (it *floatHistogramIterator) readXor(v *float64, leading, trailing *uint8) bool {
|
||
|
err := xorRead(&it.br, v, leading, trailing)
|
||
|
if err != nil {
|
||
|
it.err = err
|
||
|
return false
|
||
|
}
|
||
|
return true
|
||
|
}
|