prometheus/storage/remote/otlptranslator/prometheusremotewrite/helper.go

583 lines
19 KiB
Go
Raw Normal View History

// Copyright 2024 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/95e8f8fdc2a9dc87230406c9a3cf02be4fd68bea/pkg/translator/prometheusremotewrite/helper.go
// Provenance-includes-license: Apache-2.0
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
package prometheusremotewrite
import (
"encoding/hex"
"fmt"
"log"
"math"
"slices"
"sort"
"strconv"
"time"
"unicode/utf8"
"github.com/cespare/xxhash/v2"
"github.com/prometheus/common/model"
"go.opentelemetry.io/collector/pdata/pcommon"
"go.opentelemetry.io/collector/pdata/pmetric"
conventions "go.opentelemetry.io/collector/semconv/v1.6.1"
"github.com/prometheus/prometheus/model/timestamp"
"github.com/prometheus/prometheus/model/value"
"github.com/prometheus/prometheus/prompb"
prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus"
)
const (
sumStr = "_sum"
countStr = "_count"
bucketStr = "_bucket"
leStr = "le"
quantileStr = "quantile"
pInfStr = "+Inf"
createdSuffix = "_created"
// maxExemplarRunes is the maximum number of UTF-8 exemplar characters
// according to the prometheus specification
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
maxExemplarRunes = 128
// Trace and Span id keys are defined as part of the spec:
// https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification%2Fmetrics%2Fdatamodel.md#exemplars-2
traceIDKey = "trace_id"
spanIDKey = "span_id"
infoType = "info"
targetMetricName = "target_info"
)
type bucketBoundsData struct {
ts *prompb.TimeSeries
bound float64
}
// byBucketBoundsData enables the usage of sort.Sort() with a slice of bucket bounds
type byBucketBoundsData []bucketBoundsData
func (m byBucketBoundsData) Len() int { return len(m) }
func (m byBucketBoundsData) Less(i, j int) bool { return m[i].bound < m[j].bound }
func (m byBucketBoundsData) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
// ByLabelName enables the usage of sort.Sort() with a slice of labels
type ByLabelName []prompb.Label
func (a ByLabelName) Len() int { return len(a) }
func (a ByLabelName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a ByLabelName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// timeSeriesSignature returns a hashed label set signature.
// The label slice should not contain duplicate label names; this method sorts the slice by label name before creating
// the signature.
// The algorithm is the same as in Prometheus' labels.StableHash function.
func timeSeriesSignature(labels []prompb.Label) uint64 {
sort.Sort(ByLabelName(labels))
// Use xxhash.Sum64(b) for fast path as it's faster.
b := make([]byte, 0, 1024)
for i, v := range labels {
if len(b)+len(v.Name)+len(v.Value)+2 >= cap(b) {
// If labels entry is 1KB+ do not allocate whole entry.
h := xxhash.New()
_, _ = h.Write(b)
for _, v := range labels[i:] {
_, _ = h.WriteString(v.Name)
_, _ = h.Write(seps)
_, _ = h.WriteString(v.Value)
_, _ = h.Write(seps)
}
return h.Sum64()
}
b = append(b, v.Name...)
b = append(b, seps[0])
b = append(b, v.Value...)
b = append(b, seps[0])
}
return xxhash.Sum64(b)
}
var seps = []byte{'\xff'}
// createAttributes creates a slice of Prometheus Labels with OTLP attributes and pairs of string values.
// Unpaired string values are ignored. String pairs overwrite OTLP labels if collisions happen and
// if logOnOverwrite is true, the overwrite is logged. Resulting label names are sanitized.
func createAttributes(resource pcommon.Resource, attributes pcommon.Map, externalLabels map[string]string,
ignoreAttrs []string, logOnOverwrite bool, extras ...string) []prompb.Label {
resourceAttrs := resource.Attributes()
serviceName, haveServiceName := resourceAttrs.Get(conventions.AttributeServiceName)
instance, haveInstanceID := resourceAttrs.Get(conventions.AttributeServiceInstanceID)
// Calculate the maximum possible number of labels we could return so we can preallocate l
maxLabelCount := attributes.Len() + len(externalLabels) + len(extras)/2
if haveServiceName {
maxLabelCount++
}
if haveInstanceID {
maxLabelCount++
}
// map ensures no duplicate label name
l := make(map[string]string, maxLabelCount)
// Ensure attributes are sorted by key for consistent merging of keys which
// collide when sanitized.
labels := make([]prompb.Label, 0, maxLabelCount)
// XXX: Should we always drop service namespace/service name/service instance ID from the labels
// (as they get mapped to other Prometheus labels)?
attributes.Range(func(key string, value pcommon.Value) bool {
if !slices.Contains(ignoreAttrs, key) {
labels = append(labels, prompb.Label{Name: key, Value: value.AsString()})
}
return true
})
sort.Stable(ByLabelName(labels))
for _, label := range labels {
var finalKey = prometheustranslator.NormalizeLabel(label.Name)
if existingValue, alreadyExists := l[finalKey]; alreadyExists {
l[finalKey] = existingValue + ";" + label.Value
} else {
l[finalKey] = label.Value
}
}
// Map service.name + service.namespace to job
if haveServiceName {
val := serviceName.AsString()
if serviceNamespace, ok := resourceAttrs.Get(conventions.AttributeServiceNamespace); ok {
val = fmt.Sprintf("%s/%s", serviceNamespace.AsString(), val)
}
l[model.JobLabel] = val
}
// Map service.instance.id to instance
if haveInstanceID {
l[model.InstanceLabel] = instance.AsString()
}
for key, value := range externalLabels {
// External labels have already been sanitized
if _, alreadyExists := l[key]; alreadyExists {
// Skip external labels if they are overridden by metric attributes
continue
}
l[key] = value
}
for i := 0; i < len(extras); i += 2 {
if i+1 >= len(extras) {
break
}
name := extras[i]
_, found := l[name]
if found && logOnOverwrite {
log.Println("label " + name + " is overwritten. Check if Prometheus reserved labels are used.")
}
// internal labels should be maintained
if !(len(name) > 4 && name[:2] == "__" && name[len(name)-2:] == "__") {
name = prometheustranslator.NormalizeLabel(name)
}
l[name] = extras[i+1]
}
labels = labels[:0]
for k, v := range l {
labels = append(labels, prompb.Label{Name: k, Value: v})
}
return labels
}
// isValidAggregationTemporality checks whether an OTel metric has a valid
// aggregation temporality for conversion to a Prometheus metric.
func isValidAggregationTemporality(metric pmetric.Metric) bool {
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge, pmetric.MetricTypeSummary:
return true
case pmetric.MetricTypeSum:
return metric.Sum().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeHistogram:
return metric.Histogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeExponentialHistogram:
return metric.ExponentialHistogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
}
return false
}
// addHistogramDataPoints adds OTel histogram data points to the corresponding Prometheus time series
// as classical histogram samples.
//
// Note that we can't convert to native histograms, since these have exponential buckets and don't line up
// with the user defined bucket boundaries of non-exponential OTel histograms.
// However, work is under way to resolve this shortcoming through a feature called native histograms custom buckets:
// https://github.com/prometheus/prometheus/issues/13485.
func (c *PrometheusConverter) addHistogramDataPoints(dataPoints pmetric.HistogramDataPointSlice,
resource pcommon.Resource, settings Settings, baseName string) {
for x := 0; x < dataPoints.Len(); x++ {
pt := dataPoints.At(x)
timestamp := convertTimeStamp(pt.Timestamp())
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
// If the sum is unset, it indicates the _sum metric point should be
// omitted
if pt.HasSum() {
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
sumlabels := createLabels(baseName+sumStr, baseLabels)
c.addSample(sum, sumlabels)
}
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(baseName+countStr, baseLabels)
c.addSample(count, countlabels)
// cumulative count for conversion to cumulative histogram
var cumulativeCount uint64
var bucketBounds []bucketBoundsData
// process each bound, based on histograms proto definition, # of buckets = # of explicit bounds + 1
for i := 0; i < pt.ExplicitBounds().Len() && i < pt.BucketCounts().Len(); i++ {
bound := pt.ExplicitBounds().At(i)
cumulativeCount += pt.BucketCounts().At(i)
bucket := &prompb.Sample{
Value: float64(cumulativeCount),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
bucket.Value = math.Float64frombits(value.StaleNaN)
}
boundStr := strconv.FormatFloat(bound, 'f', -1, 64)
labels := createLabels(baseName+bucketStr, baseLabels, leStr, boundStr)
ts := c.addSample(bucket, labels)
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: bound})
}
// add le=+Inf bucket
infBucket := &prompb.Sample{
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
infBucket.Value = math.Float64frombits(value.StaleNaN)
} else {
infBucket.Value = float64(pt.Count())
}
infLabels := createLabels(baseName+bucketStr, baseLabels, leStr, pInfStr)
ts := c.addSample(infBucket, infLabels)
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: math.Inf(1)})
c.addExemplars(pt, bucketBounds)
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
labels := createLabels(baseName+createdSuffix, baseLabels)
c.addTimeSeriesIfNeeded(labels, startTimestamp, pt.Timestamp())
}
}
}
type exemplarType interface {
pmetric.ExponentialHistogramDataPoint | pmetric.HistogramDataPoint | pmetric.NumberDataPoint
Exemplars() pmetric.ExemplarSlice
}
func getPromExemplars[T exemplarType](pt T) []prompb.Exemplar {
promExemplars := make([]prompb.Exemplar, 0, pt.Exemplars().Len())
for i := 0; i < pt.Exemplars().Len(); i++ {
exemplar := pt.Exemplars().At(i)
exemplarRunes := 0
promExemplar := prompb.Exemplar{
Value: exemplar.DoubleValue(),
Timestamp: timestamp.FromTime(exemplar.Timestamp().AsTime()),
}
if traceID := exemplar.TraceID(); !traceID.IsEmpty() {
val := hex.EncodeToString(traceID[:])
exemplarRunes += utf8.RuneCountInString(traceIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: traceIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
if spanID := exemplar.SpanID(); !spanID.IsEmpty() {
val := hex.EncodeToString(spanID[:])
exemplarRunes += utf8.RuneCountInString(spanIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: spanIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
attrs := exemplar.FilteredAttributes()
labelsFromAttributes := make([]prompb.Label, 0, attrs.Len())
attrs.Range(func(key string, value pcommon.Value) bool {
val := value.AsString()
exemplarRunes += utf8.RuneCountInString(key) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: key,
Value: val,
}
labelsFromAttributes = append(labelsFromAttributes, promLabel)
return true
})
if exemplarRunes <= maxExemplarRunes {
// only append filtered attributes if it does not cause exemplar
// labels to exceed the max number of runes
promExemplar.Labels = append(promExemplar.Labels, labelsFromAttributes...)
}
promExemplars = append(promExemplars, promExemplar)
}
return promExemplars
}
// mostRecentTimestampInMetric returns the latest timestamp in a batch of metrics
func mostRecentTimestampInMetric(metric pmetric.Metric) pcommon.Timestamp {
var ts pcommon.Timestamp
// handle individual metric based on type
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge:
dataPoints := metric.Gauge().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = max(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSum:
dataPoints := metric.Sum().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = max(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeHistogram:
dataPoints := metric.Histogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = max(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeExponentialHistogram:
dataPoints := metric.ExponentialHistogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = max(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSummary:
dataPoints := metric.Summary().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = max(ts, dataPoints.At(x).Timestamp())
}
}
return ts
}
func (c *PrometheusConverter) addSummaryDataPoints(dataPoints pmetric.SummaryDataPointSlice, resource pcommon.Resource,
settings Settings, baseName string) {
for x := 0; x < dataPoints.Len(); x++ {
pt := dataPoints.At(x)
timestamp := convertTimeStamp(pt.Timestamp())
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
// sum and count of the summary should append suffix to baseName
sumlabels := createLabels(baseName+sumStr, baseLabels)
c.addSample(sum, sumlabels)
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(baseName+countStr, baseLabels)
c.addSample(count, countlabels)
// process each percentile/quantile
for i := 0; i < pt.QuantileValues().Len(); i++ {
qt := pt.QuantileValues().At(i)
quantile := &prompb.Sample{
Value: qt.Value(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
quantile.Value = math.Float64frombits(value.StaleNaN)
}
percentileStr := strconv.FormatFloat(qt.Quantile(), 'f', -1, 64)
qtlabels := createLabels(baseName, baseLabels, quantileStr, percentileStr)
c.addSample(quantile, qtlabels)
}
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
createdLabels := createLabels(baseName+createdSuffix, baseLabels)
c.addTimeSeriesIfNeeded(createdLabels, startTimestamp, pt.Timestamp())
}
}
}
// createLabels returns a copy of baseLabels, adding to it the pair model.MetricNameLabel=name.
// If extras are provided, corresponding label pairs are also added to the returned slice.
// If extras is uneven length, the last (unpaired) extra will be ignored.
func createLabels(name string, baseLabels []prompb.Label, extras ...string) []prompb.Label {
extraLabelCount := len(extras) / 2
labels := make([]prompb.Label, len(baseLabels), len(baseLabels)+extraLabelCount+1) // +1 for name
copy(labels, baseLabels)
n := len(extras)
n -= n % 2
for extrasIdx := 0; extrasIdx < n; extrasIdx += 2 {
labels = append(labels, prompb.Label{Name: extras[extrasIdx], Value: extras[extrasIdx+1]})
}
labels = append(labels, prompb.Label{Name: model.MetricNameLabel, Value: name})
return labels
}
// getOrCreateTimeSeries returns the time series corresponding to the label set if existent, and false.
// Otherwise it creates a new one and returns that, and true.
func (c *PrometheusConverter) getOrCreateTimeSeries(lbls []prompb.Label) (*prompb.TimeSeries, bool) {
h := timeSeriesSignature(lbls)
ts := c.unique[h]
if ts != nil {
if isSameMetric(ts, lbls) {
// We already have this metric
return ts, false
}
// Look for a matching conflict
for _, cTS := range c.conflicts[h] {
if isSameMetric(cTS, lbls) {
// We already have this metric
return cTS, false
}
}
// New conflict
ts = &prompb.TimeSeries{
Labels: lbls,
}
c.conflicts[h] = append(c.conflicts[h], ts)
return ts, true
}
// This metric is new
ts = &prompb.TimeSeries{
Labels: lbls,
}
c.unique[h] = ts
return ts, true
}
// addTimeSeriesIfNeeded adds a corresponding time series if it doesn't already exist.
// If the time series doesn't already exist, it gets added with startTimestamp for its value and timestamp for its timestamp,
// both converted to milliseconds.
func (c *PrometheusConverter) addTimeSeriesIfNeeded(lbls []prompb.Label, startTimestamp pcommon.Timestamp, timestamp pcommon.Timestamp) {
ts, created := c.getOrCreateTimeSeries(lbls)
if created {
ts.Samples = []prompb.Sample{
{
// convert ns to ms
Value: float64(convertTimeStamp(startTimestamp)),
Timestamp: convertTimeStamp(timestamp),
},
}
}
}
// addResourceTargetInfo converts the resource to the target info metric.
func addResourceTargetInfo(resource pcommon.Resource, settings Settings, timestamp pcommon.Timestamp, converter *PrometheusConverter) {
if settings.DisableTargetInfo || timestamp == 0 {
return
}
attributes := resource.Attributes()
identifyingAttrs := []string{
conventions.AttributeServiceNamespace,
conventions.AttributeServiceName,
conventions.AttributeServiceInstanceID,
}
nonIdentifyingAttrsCount := attributes.Len()
for _, a := range identifyingAttrs {
_, haveAttr := attributes.Get(a)
if haveAttr {
nonIdentifyingAttrsCount--
}
}
if nonIdentifyingAttrsCount == 0 {
// If we only have job + instance, then target_info isn't useful, so don't add it.
return
}
name := targetMetricName
if len(settings.Namespace) > 0 {
name = settings.Namespace + "_" + name
}
labels := createAttributes(resource, attributes, settings.ExternalLabels, identifyingAttrs, false, model.MetricNameLabel, name)
haveIdentifier := false
for _, l := range labels {
if l.Name == model.JobLabel || l.Name == model.InstanceLabel {
haveIdentifier = true
break
}
}
if !haveIdentifier {
// We need at least one identifying label to generate target_info.
return
}
sample := &prompb.Sample{
Value: float64(1),
// convert ns to ms
Timestamp: convertTimeStamp(timestamp),
}
converter.addSample(sample, labels)
}
// convertTimeStamp converts OTLP timestamp in ns to timestamp in ms
func convertTimeStamp(timestamp pcommon.Timestamp) int64 {
return timestamp.AsTime().UnixNano() / (int64(time.Millisecond) / int64(time.Nanosecond))
}