prometheus/promql/test_test.go

519 lines
18 KiB
Go
Raw Normal View History

// Copyright 2019 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"math"
"testing"
"time"
"github.com/stretchr/testify/require"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/tsdb/chunkenc"
)
func TestLazyLoader_WithSamplesTill(t *testing.T) {
type testCase struct {
ts time.Time
series []Series // Each series is checked separately. Need not mention all series here.
checkOnlyError bool // If this is true, series is not checked.
}
cases := []struct {
loadString string
// These testCases are run in sequence. So the testCase being run is dependent on the previous testCase.
testCases []testCase
}{
{
loadString: `
load 10s
metric1 1+1x10
`,
testCases: []testCase{
{
ts: time.Unix(40, 0),
series: []Series{
{
Metric: labels.FromStrings("__name__", "metric1"),
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
Floats: []FPoint{
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5},
},
},
},
},
{
ts: time.Unix(10, 0),
series: []Series{
{
Metric: labels.FromStrings("__name__", "metric1"),
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
Floats: []FPoint{
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5},
},
},
},
},
{
ts: time.Unix(60, 0),
series: []Series{
{
Metric: labels.FromStrings("__name__", "metric1"),
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
Floats: []FPoint{
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5}, {50000, 6}, {60000, 7},
},
},
},
},
},
},
{
loadString: `
load 10s
metric1 1+0x5
metric2 1+1x100
`,
testCases: []testCase{
{ // Adds all samples of metric1.
ts: time.Unix(70, 0),
series: []Series{
{
Metric: labels.FromStrings("__name__", "metric1"),
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
Floats: []FPoint{
{0, 1}, {10000, 1}, {20000, 1}, {30000, 1}, {40000, 1}, {50000, 1},
},
},
{
Metric: labels.FromStrings("__name__", "metric2"),
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
Floats: []FPoint{
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5}, {50000, 6}, {60000, 7}, {70000, 8},
},
},
},
},
{ // This tests fix for https://github.com/prometheus/prometheus/issues/5064.
ts: time.Unix(300, 0),
checkOnlyError: true,
},
},
},
}
for _, c := range cases {
suite, err := NewLazyLoader(c.loadString, LazyLoaderOpts{})
require.NoError(t, err)
defer suite.Close()
for _, tc := range c.testCases {
suite.WithSamplesTill(tc.ts, func(err error) {
require.NoError(t, err)
if tc.checkOnlyError {
return
}
// Check the series.
queryable := suite.Queryable()
querier, err := queryable.Querier(math.MinInt64, math.MaxInt64)
require.NoError(t, err)
for _, s := range tc.series {
var matchers []*labels.Matcher
s.Metric.Range(func(label labels.Label) {
m, err := labels.NewMatcher(labels.MatchEqual, label.Name, label.Value)
require.NoError(t, err)
matchers = append(matchers, m)
})
// Get the series for the matcher.
ss := querier.Select(suite.Context(), false, nil, matchers...)
require.True(t, ss.Next())
storageSeries := ss.At()
require.False(t, ss.Next(), "Expecting only 1 series")
// Convert `storage.Series` to `promql.Series`.
got := Series{
Metric: storageSeries.Labels(),
}
it := storageSeries.Iterator(nil)
for it.Next() == chunkenc.ValFloat {
t, v := it.At()
promql: Separate `Point` into `FPoint` and `HPoint` In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
2022-10-28 07:58:40 -07:00
got.Floats = append(got.Floats, FPoint{T: t, F: v})
}
require.NoError(t, it.Err())
require.Equal(t, s, got)
}
})
}
}
}
func TestRunTest(t *testing.T) {
testData := `
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
`
testCases := map[string]struct {
input string
expectedError string
}{
"instant query with expected float result": {
input: testData + `
eval instant at 5m sum by (group) (http_requests)
{group="production"} 30
{group="canary"} 70
`,
},
"instant query with unexpected float result": {
input: testData + `
eval instant at 5m sum by (group) (http_requests)
{group="production"} 30
{group="canary"} 80
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected 80 for {group="canary"} but got 70`,
},
"instant query with expected histogram result": {
input: `
load 5m
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}}
eval instant at 0 testmetric
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}}
`,
},
"instant query with unexpected histogram result": {
input: `
load 5m
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}}
eval instant at 0 testmetric
testmetric {{schema:-1 sum:6 count:1 buckets:[1] offset:1}}
`,
expectedError: `error in eval testmetric (line 5): expected {{schema:-1 count:1 sum:6 offset:1 buckets:[1]}} for {__name__="testmetric"} but got {{schema:-1 count:1 sum:4 offset:1 buckets:[1]}}`,
},
"instant query with float value returned when histogram expected": {
input: `
load 5m
testmetric 2
eval instant at 0 testmetric
testmetric {{}}
`,
expectedError: `error in eval testmetric (line 5): expected histogram {{}} for {__name__="testmetric"} but got float value 2`,
},
"instant query with histogram returned when float expected": {
input: `
load 5m
testmetric {{}}
eval instant at 0 testmetric
testmetric 2
`,
expectedError: `error in eval testmetric (line 5): expected float value 2.000000 for {__name__="testmetric"} but got histogram {{}}`,
},
"instant query, but result has an unexpected series with a float value": {
input: testData + `
eval instant at 5m sum by (group) (http_requests)
{group="production"} 30
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): unexpected metric {group="canary"} in result, has value 70`,
},
"instant query, but result has an unexpected series with a histogram value": {
input: `
load 5m
testmetric {{}}
eval instant at 5m testmetric
`,
expectedError: `error in eval testmetric (line 5): unexpected metric {__name__="testmetric"} in result, has value {count:0, sum:0}`,
},
"instant query, but result is missing a series": {
input: testData + `
eval instant at 5m sum by (group) (http_requests)
{group="production"} 30
{group="canary"} 70
{group="test"} 100
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected metric {group="test"} with 3: [100.000000] not found`,
},
"instant query expected to fail, and query fails": {
input: `
load 5m
testmetric1{src="a",dst="b"} 0
testmetric2{src="a",dst="b"} 1
eval_fail instant at 0m ceil({__name__=~'testmetric1|testmetric2'})
`,
},
"instant query expected to fail, but query succeeds": {
input: `eval_fail instant at 0s vector(0)`,
expectedError: `expected error evaluating query "vector(0)" (line 1) but got none`,
},
"instant query with results expected to match provided order, and result is in expected order": {
input: testData + `
eval_ordered instant at 50m sort(http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="1", job="api-server"} 400
`,
},
"instant query with results expected to match provided order, but result is out of order": {
input: testData + `
eval_ordered instant at 50m sort(http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="0", job="api-server"} 300
`,
expectedError: `error in eval sort(http_requests) (line 8): expected metric {__name__="http_requests", group="canary", instance="0", job="api-server"} with [300.000000] at position 4 but was at 3`,
},
"instant query with results expected to match provided order, but result has an unexpected series": {
input: testData + `
eval_ordered instant at 50m sort(http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="0", job="api-server"} 300
`,
expectedError: `error in eval sort(http_requests) (line 8): unexpected metric {__name__="http_requests", group="canary", instance="1", job="api-server"} in result, has value 400`,
},
"instant query with invalid timestamp": {
input: `eval instant at abc123 vector(0)`,
expectedError: `error in eval vector(0) (line 1): invalid timestamp definition "abc123": not a valid duration string: "abc123"`,
},
"range query with expected result": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30 60
{group="canary"} 0 70 140
`,
},
"range query with unexpected float value": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30 60
{group="canary"} 0 80 140
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected float value at index 1 (t=300000) for {group="canary"} to be 80, but got 70 (result has 3 float points [0 @[0] 70 @[300000] 140 @[600000]] and 0 histogram points [])`,
},
"range query with expected histogram values": {
input: `
load 5m
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}} {{schema:-1 sum:5 count:1 buckets:[1] offset:1}} {{schema:-1 sum:6 count:1 buckets:[1] offset:1}}
eval range from 0 to 10m step 5m testmetric
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}} {{schema:-1 sum:5 count:1 buckets:[1] offset:1}} {{schema:-1 sum:6 count:1 buckets:[1] offset:1}}
`,
},
"range query with unexpected histogram value": {
input: `
load 5m
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}} {{schema:-1 sum:5 count:1 buckets:[1] offset:1}} {{schema:-1 sum:6 count:1 buckets:[1] offset:1}}
eval range from 0 to 10m step 5m testmetric
testmetric {{schema:-1 sum:4 count:1 buckets:[1] offset:1}} {{schema:-1 sum:7 count:1 buckets:[1] offset:1}} {{schema:-1 sum:8 count:1 buckets:[1] offset:1}}
`,
expectedError: `error in eval testmetric (line 5): expected histogram value at index 1 (t=300000) for {__name__="testmetric"} to be {count:1, sum:7, (1,4]:1}, but got {count:1, sum:5, (1,4]:1} (result has 0 float points [] and 3 histogram points [{count:1, sum:4, (1,4]:1} @[0] {count:1, sum:5, (1,4]:1} @[300000] {count:1, sum:6, (1,4]:1} @[600000]])`,
},
"range query with too many points for query time range": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30 60 90
{group="canary"} 0 70 140
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected 4 points for {group="production"}, but query time range cannot return this many points`,
},
"range query with missing point in result": {
input: `
load 5m
testmetric 5
eval range from 0 to 6m step 6m testmetric
testmetric 5 10
`,
expectedError: `error in eval testmetric (line 5): expected 2 float points and 0 histogram points for {__name__="testmetric"}, but got 1 float point [5 @[0]] and 0 histogram points []`,
},
"range query with extra point in result": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30
{group="canary"} 0 70 140
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected 2 float points and 0 histogram points for {group="production"}, but got 3 float points [0 @[0] 30 @[300000] 60 @[600000]] and 0 histogram points []`,
},
"range query, but result has an unexpected series": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30 60
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): unexpected metric {group="canary"} in result, has 3 float points [0 @[0] 70 @[300000] 140 @[600000]] and 0 histogram points []`,
},
"range query, but result is missing a series": {
input: testData + `
eval range from 0 to 10m step 5m sum by (group) (http_requests)
{group="production"} 0 30 60
{group="canary"} 0 70 140
{group="test"} 0 100 200
`,
expectedError: `error in eval sum by (group) (http_requests) (line 8): expected metric {group="test"} not found`,
},
"range query expected to fail, and query fails": {
input: `
load 5m
testmetric1{src="a",dst="b"} 0
testmetric2{src="a",dst="b"} 1
eval_fail range from 0 to 10m step 5m ceil({__name__=~'testmetric1|testmetric2'})
`,
},
"range query expected to fail, but query succeeds": {
input: `eval_fail range from 0 to 10m step 5m vector(0)`,
expectedError: `expected error evaluating query "vector(0)" (line 1) but got none`,
},
"range query with from and to timestamps in wrong order": {
input: `eval range from 10m to 9m step 5m vector(0)`,
expectedError: `error in eval vector(0) (line 1): invalid test definition, end timestamp (9m) is before start timestamp (10m)`,
},
"range query with sparse output": {
input: `
load 6m
testmetric 1 _ 3
eval range from 0 to 18m step 6m testmetric
testmetric 1 _ 3
`,
},
"range query with float value returned when no value expected": {
input: `
load 6m
testmetric 1 2 3
eval range from 0 to 18m step 6m testmetric
testmetric 1 _ 3
`,
expectedError: `error in eval testmetric (line 5): expected 2 float points and 0 histogram points for {__name__="testmetric"}, but got 3 float points [1 @[0] 2 @[360000] 3 @[720000]] and 0 histogram points []`,
},
"range query with float value returned when histogram expected": {
input: `
load 5m
testmetric 2 3
eval range from 0 to 5m step 5m testmetric
testmetric {{}} {{}}
`,
expectedError: `error in eval testmetric (line 5): expected 0 float points and 2 histogram points for {__name__="testmetric"}, but got 2 float points [2 @[0] 3 @[300000]] and 0 histogram points []`,
},
"range query with histogram returned when float expected": {
input: `
load 5m
testmetric {{}} {{}}
eval range from 0 to 5m step 5m testmetric
testmetric 2 3
`,
expectedError: `error in eval testmetric (line 5): expected 2 float points and 0 histogram points for {__name__="testmetric"}, but got 0 float points [] and 2 histogram points [{count:0, sum:0} @[0] {count:0, sum:0} @[300000]]`,
},
"range query with expected mixed results": {
input: `
load 6m
testmetric{group="a"} {{}} _ _
testmetric{group="b"} _ _ 3
eval range from 0 to 12m step 6m sum(testmetric)
{} {{}} _ 3
`,
},
"range query with mixed results and incorrect values": {
input: `
load 5m
testmetric 3 {{}}
eval range from 0 to 5m step 5m testmetric
testmetric {{}} 3
`,
expectedError: `error in eval testmetric (line 5): expected float value at index 0 for {__name__="testmetric"} to have timestamp 300000, but it had timestamp 0 (result has 1 float point [3 @[0]] and 1 histogram point [{count:0, sum:0} @[300000]])`,
},
}
for name, testCase := range testCases {
t.Run(name, func(t *testing.T) {
err := runTest(t, testCase.input, newTestEngine())
if testCase.expectedError == "" {
require.NoError(t, err)
} else {
require.EqualError(t, err, testCase.expectedError)
}
})
}
}
func TestAssertMatrixSorted(t *testing.T) {
testCases := map[string]struct {
matrix Matrix
expectedError string
}{
"empty matrix": {
matrix: Matrix{},
},
"matrix with one series": {
matrix: Matrix{
Series{Metric: labels.FromStrings("the_label", "value_1")},
},
},
"matrix with two series, series in sorted order": {
matrix: Matrix{
Series{Metric: labels.FromStrings("the_label", "value_1")},
Series{Metric: labels.FromStrings("the_label", "value_2")},
},
},
"matrix with two series, series in reverse order": {
matrix: Matrix{
Series{Metric: labels.FromStrings("the_label", "value_2")},
Series{Metric: labels.FromStrings("the_label", "value_1")},
},
expectedError: `matrix results should always be sorted by labels, but matrix is not sorted: series at index 1 with labels {the_label="value_1"} sorts before series at index 0 with labels {the_label="value_2"}`,
},
"matrix with three series, series in sorted order": {
matrix: Matrix{
Series{Metric: labels.FromStrings("the_label", "value_1")},
Series{Metric: labels.FromStrings("the_label", "value_2")},
Series{Metric: labels.FromStrings("the_label", "value_3")},
},
},
"matrix with three series, series not in sorted order": {
matrix: Matrix{
Series{Metric: labels.FromStrings("the_label", "value_1")},
Series{Metric: labels.FromStrings("the_label", "value_3")},
Series{Metric: labels.FromStrings("the_label", "value_2")},
},
expectedError: `matrix results should always be sorted by labels, but matrix is not sorted: series at index 2 with labels {the_label="value_2"} sorts before series at index 1 with labels {the_label="value_3"}`,
},
}
for name, testCase := range testCases {
t.Run(name, func(t *testing.T) {
err := assertMatrixSorted(testCase.matrix)
if testCase.expectedError == "" {
require.NoError(t, err)
} else {
require.EqualError(t, err, testCase.expectedError)
}
})
}
}