prometheus/head.go

742 lines
16 KiB
Go
Raw Normal View History

2016-12-04 04:16:11 -08:00
package tsdb
import (
"errors"
"math"
"sort"
2016-12-04 04:16:11 -08:00
"sync"
"sync/atomic"
"time"
2016-12-04 04:16:11 -08:00
"github.com/bradfitz/slice"
2016-12-04 04:16:11 -08:00
"github.com/fabxc/tsdb/chunks"
2016-12-21 00:39:01 -08:00
"github.com/fabxc/tsdb/labels"
"github.com/go-kit/kit/log"
2016-12-04 04:16:11 -08:00
)
// headBlock handles reads and writes of time series data within a time window.
type headBlock struct {
2016-12-21 16:12:28 -08:00
mtx sync.RWMutex
dir string
2016-12-21 16:12:28 -08:00
// descs holds all chunk descs for the head block. Each chunk implicitly
// is assigned the index as its ID.
series []*memSeries
// mapping maps a series ID to its position in an ordered list
// of all series. The orderDirty flag indicates that it has gone stale.
mapper *positionMapper
2016-12-21 16:12:28 -08:00
// hashes contains a collision map of label set hashes of chunks
// to their chunk descs.
hashes map[uint64][]*memSeries
2016-12-21 16:12:28 -08:00
nextSeriesID uint64
2016-12-21 16:12:28 -08:00
values map[string]stringset // label names to possible values
postings *memPostings // postings lists for terms
2016-12-22 03:05:24 -08:00
wal *WAL
stats *BlockStats
2016-12-04 04:16:11 -08:00
}
// openHeadBlock creates a new empty head block.
func openHeadBlock(dir string, l log.Logger) (*headBlock, error) {
wal, err := OpenWAL(dir, log.NewContext(l).With("component", "wal"), 15*time.Second)
2016-12-22 03:05:24 -08:00
if err != nil {
return nil, err
}
b := &headBlock{
dir: dir,
series: []*memSeries{},
hashes: map[uint64][]*memSeries{},
2016-12-21 16:12:28 -08:00
values: map[string]stringset{},
postings: &memPostings{m: make(map[term][]uint32)},
2016-12-22 03:05:24 -08:00
wal: wal,
mapper: newPositionMapper(nil),
}
b.stats = &BlockStats{
MinTime: math.MinInt64,
MaxTime: math.MaxInt64,
2017-01-07 07:20:32 -08:00
}
2016-12-22 06:18:33 -08:00
err = wal.ReadAll(&walHandler{
series: func(lset labels.Labels) {
b.create(uint32(b.nextSeriesID), lset.Hash(), lset)
b.nextSeriesID++
b.stats.SeriesCount++
2016-12-22 06:18:33 -08:00
},
sample: func(s hashedSample) {
si := s.ref
cd := b.series[si]
cd.append(s.t, s.v)
if s.t > b.stats.MaxTime {
b.stats.MaxTime = s.t
}
b.stats.SampleCount++
2016-12-22 06:18:33 -08:00
},
})
if err != nil {
return nil, err
}
b.updateMapping()
2016-12-22 03:05:24 -08:00
return b, nil
}
// Close syncs all data and closes underlying resources of the head block.
func (h *headBlock) Close() error {
2016-12-22 03:05:24 -08:00
return h.wal.Close()
}
func (h *headBlock) Dir() string { return h.dir }
func (h *headBlock) Persisted() bool { return false }
func (h *headBlock) Index() IndexReader { return &headIndexReader{h} }
func (h *headBlock) Series() SeriesReader { return &headSeriesReader{h} }
// Stats returns statisitics about the indexed data.
func (h *headBlock) Stats() BlockStats {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
2017-01-07 09:02:17 -08:00
return *h.stats
}
2017-01-07 09:02:17 -08:00
func (h *headBlock) Appender() Appender {
h.mtx.RLock()
return &headAppender{headBlock: h}
}
type headAppender struct {
*headBlock
newSeries map[uint32]hashedLabels
newLabels []labels.Labels
samples []hashedSample
}
type hashedLabels struct {
hash uint64
labels labels.Labels
}
func (a *headAppender) SetSeries(lset labels.Labels) (uint64, error) {
return a.setSeries(lset.Hash(), lset)
}
func (a *headAppender) setSeries(hash uint64, lset labels.Labels) (uint64, error) {
if ms := a.get(hash, lset); ms != nil {
return uint64(ms.ref), nil
}
id := atomic.AddUint64(&a.nextSeriesID, 1) - 1
if a.newSeries == nil {
a.newSeries = map[uint32]hashedLabels{}
}
a.newSeries[uint32(id)] = hashedLabels{hash: hash, labels: lset}
return id, nil
}
func (a *headAppender) Add(ref uint64, t int64, v float64) error {
// We only act on the last 4 bytes. Anything before is used by higher-order
// appenders. We erase it to avoid issues.
ref = (ref << 32) >> 32
// Distinguish between existing series and series created in
// this transaction.
if int(ref) >= len(a.series) {
if _, ok := a.newSeries[uint32(ref)]; !ok {
return errNotFound
}
// TODO(fabxc): we also have to validate here that the
// sample sequence is valid.
// We also have to revalidate it as we switch locks an create
// the new series.
a.samples = append(a.samples, hashedSample{
ref: uint32(ref),
t: t,
v: v,
})
return nil
}
ms := a.series[int(ref)]
if ms == nil {
return errNotFound
}
c := ms.head()
// TODO(fabxc): memory series should be locked here already.
// Only problem is release of locks in case of a rollback.
if t < c.maxTime {
return ErrOutOfOrderSample
}
if c.maxTime == t && ms.lastValue != v {
return ErrAmendSample
}
a.samples = append(a.samples, hashedSample{
ref: uint32(ref),
t: t,
v: v,
})
return nil
}
func (a *headAppender) createSeries() {
if len(a.newSeries) == 0 {
return
}
a.newLabels = make([]labels.Labels, 0, len(a.newSeries))
a.mtx.RUnlock()
a.mtx.Lock()
for id, l := range a.newSeries {
// We switched locks and have to re-validate that the series were not
// created by another goroutine in the meantime.
if int(id) < len(a.series) && a.series[id] != nil {
continue
}
// Series is still new.
a.newLabels = append(a.newLabels, l.labels)
a.create(id, l.hash, l.labels)
}
a.mtx.Unlock()
a.mtx.RLock()
}
func (a *headAppender) Commit() error {
defer a.mtx.RUnlock()
// Write all new series and samples to the WAL and add it to the
// in-mem database on success.
if err := a.wal.Log(a.newLabels, a.samples); err != nil {
return err
}
a.createSeries()
var (
total = uint64(len(a.samples))
mint = int64(math.MaxInt64)
maxt = int64(math.MinInt64)
)
for _, s := range a.samples {
if !a.series[s.ref].append(s.t, s.v) {
total--
}
}
a.stats.mtx.Lock()
defer a.stats.mtx.Unlock()
a.stats.SampleCount += total
a.stats.SeriesCount += uint64(len(a.newSeries))
if mint < a.stats.MinTime {
a.stats.MinTime = mint
}
if maxt > a.stats.MaxTime {
a.stats.MaxTime = maxt
}
return nil
}
func (a *headAppender) Rollback() error {
a.mtx.RUnlock()
return nil
}
type headSeriesReader struct {
*headBlock
2017-01-07 09:02:17 -08:00
}
// Chunk returns the chunk for the reference number.
func (h *headSeriesReader) Chunk(ref uint32) (chunks.Chunk, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
c := &safeChunk{
Chunk: h.series[ref>>8].chunks[int((ref<<24)>>24)].chunk,
s: h.series[ref>>8],
i: int((ref << 24) >> 24),
}
return c, nil
}
type safeChunk struct {
chunks.Chunk
s *memSeries
i int
}
func (c *safeChunk) Iterator() chunks.Iterator {
c.s.mtx.RLock()
defer c.s.mtx.RUnlock()
return c.s.iterator(c.i)
}
// func (c *safeChunk) Appender() (chunks.Appender, error) { panic("illegal") }
// func (c *safeChunk) Bytes() []byte { panic("illegal") }
// func (c *safeChunk) Encoding() chunks.Encoding { panic("illegal") }
type headIndexReader struct {
*headBlock
}
// LabelValues returns the possible label values
func (h *headIndexReader) LabelValues(names ...string) (StringTuples, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
if len(names) != 1 {
return nil, errInvalidSize
}
var sl []string
2016-12-21 16:12:28 -08:00
for s := range h.values[names[0]] {
sl = append(sl, s)
}
sort.Strings(sl)
return &stringTuples{l: len(names), s: sl}, nil
}
// Postings returns the postings list iterator for the label pair.
func (h *headIndexReader) Postings(name, value string) (Postings, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
2016-12-21 16:12:28 -08:00
return h.postings.get(term{name: name, value: value}), nil
}
// Series returns the series for the given reference.
func (h *headIndexReader) Series(ref uint32) (labels.Labels, []ChunkMeta, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
if int(ref) >= len(h.series) {
return nil, nil, errNotFound
}
s := h.series[ref]
metas := make([]ChunkMeta, 0, len(s.chunks))
s.mtx.RLock()
defer s.mtx.RUnlock()
for i, c := range s.chunks {
metas = append(metas, ChunkMeta{
MinTime: c.minTime,
MaxTime: c.maxTime,
Ref: (ref << 8) | uint32(i),
})
2017-01-03 06:43:26 -08:00
}
return s.lset, metas, nil
}
func (h *headIndexReader) LabelIndices() ([][]string, error) {
h.mtx.RLock()
defer h.mtx.RUnlock()
res := [][]string{}
for s := range h.values {
res = append(res, []string{s})
}
return res, nil
}
func (h *headIndexReader) Stats() (BlockStats, error) {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
return *h.stats, nil
}
2016-12-04 04:16:11 -08:00
// get retrieves the chunk with the hash and label set and creates
// a new one if it doesn't exist yet.
func (h *headBlock) get(hash uint64, lset labels.Labels) *memSeries {
series := h.hashes[hash]
2016-12-21 16:12:28 -08:00
for _, s := range series {
if s.lset.Equals(lset) {
return s
2016-12-04 04:16:11 -08:00
}
}
return nil
2016-12-22 03:05:24 -08:00
}
func (h *headBlock) create(ref uint32, hash uint64, lset labels.Labels) *memSeries {
s := &memSeries{
ref: ref,
lset: lset,
}
// Allocate empty space until we can insert at the given index.
for int(ref) >= len(h.series) {
h.series = append(h.series, nil)
}
h.series[ref] = s
2016-12-21 16:12:28 -08:00
h.hashes[hash] = append(h.hashes[hash], s)
2016-12-21 16:12:28 -08:00
for _, l := range lset {
valset, ok := h.values[l.Name]
if !ok {
valset = stringset{}
h.values[l.Name] = valset
}
valset.set(l.Value)
2017-01-03 06:43:26 -08:00
h.postings.add(s.ref, term{name: l.Name, value: l.Value})
2016-12-21 16:12:28 -08:00
}
2017-01-03 06:43:26 -08:00
h.postings.add(s.ref, term{})
2016-12-04 04:16:11 -08:00
return s
2016-12-04 04:16:11 -08:00
}
var (
2017-01-02 13:24:35 -08:00
// ErrOutOfOrderSample is returned if an appended sample has a
// timestamp larger than the most recent sample.
ErrOutOfOrderSample = errors.New("out of order sample")
2017-01-02 13:24:35 -08:00
// ErrAmendSample is returned if an appended sample has the same timestamp
// as the most recent sample but a different value.
ErrAmendSample = errors.New("amending sample")
ErrOutOfBounds = errors.New("out of bounds")
)
// func (h *headBlock) appendBatch(samples []hashedSample) (int, error) {
// // Find head chunks for all samples and allocate new IDs/refs for
// // ones we haven't seen before.
// var (
// newSeries = map[uint64][]*hashedSample{}
// newLabels []labels.Labels
// )
// h.mtx.RLock()
// defer h.mtx.RUnlock()
// for i := range samples {
// s := &samples[i]
// ms := h.get(s.hash, s.labels)
// if ms != nil {
// c := ms.head()
// if s.t < c.maxTime {
// return 0, ErrOutOfOrderSample
// }
// if c.maxTime == s.t && ms.lastValue != s.v {
// return 0, ErrAmendSample
// }
// // TODO(fabxc): sample refs are only scoped within a block for
// // now and we ignore any previously set value
// s.ref = ms.ref
// continue
// }
// // TODO(fabxc): technically there's still collision probability here.
// // Extract the hashmap of the head block and use an instance of it here as well.
// newSeries[s.hash] = append(newSeries[s.hash], s)
// }
// // After the samples were successfully written to the WAL, there may
// // be no further failures.
// if len(newSeries) > 0 {
// newLabels = make([]labels.Labels, 0, len(newSeries))
// base0 := len(h.series)
// h.mtx.RUnlock()
// h.mtx.Lock()
// base1 := len(h.series)
// i := 0
// for hash, ser := range newSeries {
// lset := ser[0].labels
// // We switched locks and have to re-validate that the series were not
// // created by another goroutine in the meantime.
// if base1 != base0 {
// if ms := h.get(hash, lset); ms != nil {
// for _, s := range ser {
// s.ref = ms.ref
// }
// continue
// }
// }
// // Series is still new.
// newLabels = append(newLabels, lset)
// h.create(hash, lset)
// // Set sample references to the series we just created.
// for _, s := range ser {
// s.ref = uint32(base1 + i)
// }
// i++
// }
// h.mtx.Unlock()
// h.mtx.RLock()
// }
// // Write all new series and samples to the WAL and add it to the
// // in-mem database on success.
// if err := h.wal.Log(newLabels, samples); err != nil {
// return 0, err
// }
// var (
// total = uint64(len(samples))
// mint = int64(math.MaxInt64)
// maxt = int64(math.MinInt64)
// )
// for _, s := range samples {
// ser := h.series[s.ref]
// ser.mtx.Lock()
// ok := ser.append(s.t, s.v)
// ser.mtx.Unlock()
// if !ok {
// total--
// continue
// }
// if mint > s.t {
// mint = s.t
// }
// if maxt < s.t {
// maxt = s.t
// }
// }
// h.stats.mtx.Lock()
// defer h.stats.mtx.Unlock()
// h.stats.SampleCount += total
// h.stats.SeriesCount += uint64(len(newSeries))
// h.stats.ChunkCount += uint64(len(newSeries)) // head block has one chunk/series
// if mint < h.stats.MinTime {
// h.stats.MinTime = mint
// }
// if maxt > h.stats.MaxTime {
// h.stats.MaxTime = maxt
// }
// return int(total), nil
// }
func (h *headBlock) fullness() float64 {
h.stats.mtx.RLock()
defer h.stats.mtx.RUnlock()
2017-01-07 09:02:17 -08:00
return float64(h.stats.SampleCount) / float64(h.stats.SeriesCount+1) / 250
2017-01-07 09:02:17 -08:00
}
func (h *headBlock) updateMapping() {
2017-01-09 09:07:45 -08:00
h.mtx.RLock()
if h.mapper.sortable != nil && h.mapper.Len() == len(h.series) {
2017-01-09 09:34:29 -08:00
h.mtx.RUnlock()
return
}
series := make([]*memSeries, len(h.series))
copy(series, h.series)
2017-01-09 09:07:45 -08:00
h.mtx.RUnlock()
s := slice.SortInterface(series, func(i, j int) bool {
return labels.Compare(series[i].lset, series[j].lset) < 0
})
h.mapper.update(s)
}
// remapPostings changes the order of the postings from their ID to the ordering
// of the series they reference.
// Returned postings have no longer monotonic IDs and MUST NOT be used for regular
// postings set operations, i.e. intersect and merge.
func (h *headBlock) remapPostings(p Postings) Postings {
list, err := expandPostings(p)
if err != nil {
return errPostings{err: err}
}
2017-01-09 10:24:05 -08:00
h.mapper.mtx.Lock()
defer h.mapper.mtx.Unlock()
2017-01-09 10:24:05 -08:00
h.updateMapping()
h.mapper.Sort(list)
return newListPostings(list)
}
type memSeries struct {
mtx sync.RWMutex
ref uint32
lset labels.Labels
chunks []*memChunk
lastValue float64
sampleBuf [4]sample
app chunks.Appender // Current appender for the chunkdb.
}
func (s *memSeries) cut() *memChunk {
c := &memChunk{
chunk: chunks.NewXORChunk(),
maxTime: math.MinInt64,
}
s.chunks = append(s.chunks, c)
app, err := c.chunk.Appender()
if err != nil {
panic(err)
}
s.app = app
return c
}
func (s *memSeries) append(t int64, v float64) bool {
var c *memChunk
if s.app == nil || s.head().samples > 10050 {
c = s.cut()
c.minTime = t
} else {
c = s.head()
// Skip duplicate samples.
if c.maxTime == t && s.lastValue != v {
return false
}
}
s.app.Append(t, v)
c.maxTime = t
c.samples++
s.lastValue = v
s.sampleBuf[0] = s.sampleBuf[1]
s.sampleBuf[1] = s.sampleBuf[2]
s.sampleBuf[2] = s.sampleBuf[3]
s.sampleBuf[3] = sample{t: t, v: v}
return true
}
func (s *memSeries) iterator(i int) chunks.Iterator {
c := s.chunks[i]
if i < len(s.chunks)-1 {
return c.chunk.Iterator()
}
it := &memSafeIterator{
Iterator: c.chunk.Iterator(),
i: -1,
total: c.samples,
buf: s.sampleBuf,
}
return it
}
func (s *memSeries) head() *memChunk {
return s.chunks[len(s.chunks)-1]
}
type memChunk struct {
chunk chunks.Chunk
minTime, maxTime int64
samples int
}
type memSafeIterator struct {
chunks.Iterator
i int
total int
buf [4]sample
}
func (it *memSafeIterator) Next() bool {
if it.i+1 >= it.total {
return false
}
it.i++
if it.total-it.i > 4 {
return it.Iterator.Next()
}
return true
}
func (it *memSafeIterator) At() (int64, float64) {
if it.total-it.i > 4 {
return it.Iterator.At()
}
s := it.buf[4-(it.total-it.i)]
return s.t, s.v
}
// positionMapper stores a position mapping from unsorted to
// sorted indices of a sortable collection.
type positionMapper struct {
mtx sync.RWMutex
sortable sort.Interface
iv, fw []int
}
func newPositionMapper(s sort.Interface) *positionMapper {
m := &positionMapper{}
if s != nil {
m.update(s)
}
return m
}
func (m *positionMapper) Len() int { return m.sortable.Len() }
func (m *positionMapper) Less(i, j int) bool { return m.sortable.Less(i, j) }
func (m *positionMapper) Swap(i, j int) {
m.sortable.Swap(i, j)
m.iv[i], m.iv[j] = m.iv[j], m.iv[i]
}
func (m *positionMapper) Sort(l []uint32) {
slice.Sort(l, func(i, j int) bool {
return m.fw[l[i]] < m.fw[l[j]]
})
}
func (m *positionMapper) update(s sort.Interface) {
m.sortable = s
m.iv = make([]int, s.Len())
m.fw = make([]int, s.Len())
for i := range m.iv {
m.iv[i] = i
}
sort.Sort(m)
for i, k := range m.iv {
m.fw[k] = i
}
}