mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-09 23:24:05 -08:00
add doc
Signed-off-by: jyz0309 <45495947@qq.com>
This commit is contained in:
parent
7f32a5d0d6
commit
02e032884a
|
@ -192,7 +192,7 @@ bucket. Otherwise, the upper bound of the lowest bucket is returned
|
|||
for quantiles located in the lowest bucket.
|
||||
|
||||
If `b` has 0 observations, `NaN` is returned. If `b` contains fewer than two buckets,
|
||||
`NaN` is returned. For φ < 0, `-Inf` is returned. For φ > 1, `+Inf` is returned.
|
||||
`NaN` is returned. For φ < 0, `-Inf` is returned. For φ > 1, `+Inf` is returned. For φ = `NaN`, `NaN` is returned.
|
||||
|
||||
## `holt_winters()`
|
||||
|
||||
|
@ -456,4 +456,4 @@ The following are useful for converting between degrees and radians:
|
|||
|
||||
- `deg(v instant-vector)`: converts radians to degrees for all elements in `v`.
|
||||
- `pi()`: returns pi.
|
||||
- `rad(v instant-vector)`: converts degrees to radians for all elements in `v`.
|
||||
- `rad(v instant-vector)`: converts degrees to radians for all elements in `v`.
|
||||
|
|
|
@ -241,7 +241,7 @@ vector. `by` and `without` are only used to bucket the input vector.
|
|||
`quantile` calculates the φ-quantile, the value that ranks at number φ*N among
|
||||
the N metric values of the dimensions aggregated over. φ is provided as the
|
||||
aggregation parameter. For example, `quantile(0.5, ...)` calculates the median,
|
||||
`quantile(0.95, ...)` the 95th percentile.
|
||||
`quantile(0.95, ...)` the 95th percentile. For φ = `NaN`, `NaN` is returned.
|
||||
|
||||
Example:
|
||||
|
||||
|
|
|
@ -34,18 +34,3 @@ func TestEvaluations(t *testing.T) {
|
|||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestOne(t *testing.T) {
|
||||
files, err := filepath.Glob("testdata/nan.test")
|
||||
require.NoError(t, err)
|
||||
|
||||
for _, fn := range files {
|
||||
t.Run(fn, func(t *testing.T) {
|
||||
test, err := newTestFromFile(t, fn)
|
||||
require.NoError(t, err)
|
||||
require.NoError(t, test.Run())
|
||||
|
||||
test.Close()
|
||||
})
|
||||
}
|
||||
}
|
||||
|
|
|
@ -67,11 +67,13 @@ type metricWithBuckets struct {
|
|||
//
|
||||
// If the highest bucket is not +Inf, NaN is returned.
|
||||
//
|
||||
// If q==NaN, NaN is returned.
|
||||
//
|
||||
// If q<0, -Inf is returned.
|
||||
//
|
||||
// If q>1, +Inf is returned.
|
||||
func bucketQuantile(q float64, buckets buckets) float64 {
|
||||
if math.IsNaN(q){
|
||||
if math.IsNaN(q) {
|
||||
return math.NaN()
|
||||
}
|
||||
if q < 0 {
|
||||
|
@ -184,11 +186,12 @@ func ensureMonotonic(buckets buckets) {
|
|||
// quantile calculates the given quantile of a vector of samples.
|
||||
//
|
||||
// The Vector will be sorted.
|
||||
// If 'values' has zero elements or 'q' == NaN, NaN is returned.
|
||||
// If 'values' has zero elements
|
||||
// If q==NaN, NaN is returned.
|
||||
// If q<0, -Inf is returned.
|
||||
// If q>1, +Inf is returned.
|
||||
func quantile(q float64, values vectorByValueHeap) float64 {
|
||||
if len(values) == 0 || q == math.NaN() {
|
||||
if len(values) == 0 || math.IsNaN(q) {
|
||||
return math.NaN()
|
||||
}
|
||||
if q < 0 {
|
||||
|
|
5
promql/testdata/histograms.test
vendored
5
promql/testdata/histograms.test
vendored
|
@ -60,6 +60,11 @@ eval instant at 50m histogram_quantile(1.01, testhistogram_bucket)
|
|||
{start="positive"} +Inf
|
||||
{start="negative"} +Inf
|
||||
|
||||
# Quantile invalid.
|
||||
eval instant at 50m histogram_quantile(NaN, testhistogram_bucket)
|
||||
{start="positive"} NaN
|
||||
{start="negative"} NaN
|
||||
|
||||
# Quantile value in lowest bucket, which is positive.
|
||||
eval instant at 50m histogram_quantile(0, testhistogram_bucket{start="positive"})
|
||||
{start="positive"} 0
|
||||
|
|
21
promql/testdata/nan.test
vendored
21
promql/testdata/nan.test
vendored
|
@ -1,21 +0,0 @@
|
|||
# Two histograms with 4 buckets each (x_sum and x_count not included,
|
||||
# only buckets). Lowest bucket for one histogram < 0, for the other >
|
||||
# 0. They have the same name, just separated by label. Not useful in
|
||||
# practice, but can happen (if clients change bucketing), and the
|
||||
# server has to cope with it.
|
||||
|
||||
# Test histogram.
|
||||
load 5m
|
||||
testhistogram_bucket{le="0.1", start="positive"} 0+5x10
|
||||
testhistogram_bucket{le=".2", start="positive"} 0+7x10
|
||||
testhistogram_bucket{le="1e0", start="positive"} 0+11x10
|
||||
testhistogram_bucket{le="+Inf", start="positive"} 0+12x10
|
||||
testhistogram_bucket{le="-.2", start="negative"} 0+1x10
|
||||
testhistogram_bucket{le="-0.1", start="negative"} 0+2x10
|
||||
testhistogram_bucket{le="0.3", start="negative"} 0+2x10
|
||||
testhistogram_bucket{le="+Inf", start="negative"} 0+3x10
|
||||
|
||||
|
||||
# Quantile value in lowest bucket, which is positive.
|
||||
eval instant at 50m histogram_quantile(NaN, testhistogram_bucket{start="positive"})
|
||||
{start="positive"} 0
|
Loading…
Reference in a new issue