mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-09 23:24:05 -08:00
Native histograms: define behavior when rate is null.
Histogram quantile returns NaN in this case, which might be surprising, so add a unit test that clarifies that this is intentional. Signed-off-by: György Krajcsovits <gyorgy.krajcsovits@grafana.com>
This commit is contained in:
parent
616038f2b6
commit
06a8886b94
29
promql/promqltest/testdata/histograms.test
vendored
29
promql/promqltest/testdata/histograms.test
vendored
|
@ -482,3 +482,32 @@ load_with_nhcb 5m
|
|||
eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*_bucket"})
|
||||
|
||||
eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*"})
|
||||
|
||||
# Histogram with constant buckets.
|
||||
load_with_nhcb 1m
|
||||
const_histogram_bucket{le="0.0"} 1 1 1 1 1
|
||||
const_histogram_bucket{le="1.0"} 1 1 1 1 1
|
||||
const_histogram_bucket{le="2.0"} 1 1 1 1 1
|
||||
const_histogram_bucket{le="+Inf"} 1 1 1 1 1
|
||||
|
||||
# There is no change to the bucket count over time, thus rate is 0 in each bucket.
|
||||
eval instant at 5m rate(const_histogram_bucket[5m])
|
||||
{le="0.0"} 0
|
||||
{le="1.0"} 0
|
||||
{le="2.0"} 0
|
||||
{le="+Inf"} 0
|
||||
|
||||
# There is no change to the bucket count over time, thus rate is 0 in each bucket.
|
||||
# However native histograms do not represent empty buckets, so here the zeros are implicit.
|
||||
eval instant at 5m rate(const_histogram[5m])
|
||||
{} {{schema:-53 sum:0 count:0 custom_values:[0.0 1.0 2.0]}}
|
||||
|
||||
# Zero buckets mean no observations, so there is no value that observations fall bellow,
|
||||
# which means that any quantile is a NaN.
|
||||
eval instant at 5m histogram_quantile(1.0, sum by (le) (rate(const_histogram_bucket[5m])))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so there is no value that observations fall bellow,
|
||||
# which means that any quantile is a NaN.
|
||||
eval instant at 5m histogram_quantile(1.0, sum(rate(const_histogram[5m])))
|
||||
{} NaN
|
||||
|
|
|
@ -784,3 +784,42 @@ eval_warn instant at 1m rate(some_metric[30s])
|
|||
# Start with exponential, end with custom.
|
||||
eval_warn instant at 30s rate(some_metric[30s])
|
||||
# Should produce no results.
|
||||
|
||||
# Histogram with constant buckets.
|
||||
load 1m
|
||||
const_histogram {{schema:0 sum:1 count:1 buckets:[1 1 1]}} {{schema:0 sum:1 count:1 buckets:[1 1 1]}} {{schema:0 sum:1 count:1 buckets:[1 1 1]}} {{schema:0 sum:1 count:1 buckets:[1 1 1]}} {{schema:0 sum:1 count:1 buckets:[1 1 1]}}
|
||||
|
||||
# There is no change to the bucket count over time, thus rate is 0 in each bucket.
|
||||
# However native histograms do not represent empty buckets, so here the zeros are implicit.
|
||||
eval instant at 5m rate(const_histogram[5m])
|
||||
{} {{schema:0 sum:0 count:0}}
|
||||
|
||||
# Zero buckets mean no observations, so average has no meaningful value.
|
||||
eval instant at 5m histogram_avg(rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so count is 0.
|
||||
eval instant at 5m histogram_count(rate(const_histogram[5m]))
|
||||
{} 0.0
|
||||
|
||||
# Zero buckets mean no observations, so the sum should be NaN, However
|
||||
# we return 0 for compatibility with classic histograms.
|
||||
eval instant at 5m histogram_sum(rate(const_histogram[5m]))
|
||||
{} 0.0
|
||||
|
||||
# BUG??? Zero buckets mean no observations, thus any fraction should be 0.
|
||||
eval instant at 5m histogram_fraction(0.0, 1.0, rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so there is no value that observations fall bellow,
|
||||
# which means that any quantile is a NaN.
|
||||
eval instant at 5m histogram_quantile(1.0, rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so there is no standard deviation.
|
||||
eval instant at 5m histogram_stddev(rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
||||
# Zero buckets mean no observations, so there is no standard variance.
|
||||
eval instant at 5m histogram_stdvar(rate(const_histogram[5m]))
|
||||
{} NaN
|
||||
|
|
Loading…
Reference in a new issue