mirror of
https://github.com/prometheus/prometheus.git
synced 2024-12-25 05:34:05 -08:00
Revise according to code review
Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
This commit is contained in:
parent
feaa93da77
commit
0cbf0c1c68
|
@ -1174,7 +1174,7 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
F: res,
|
||||
})
|
||||
if forcedMonotonicity {
|
||||
annos.Add(annotations.NewHistogramQuantileForcedMonotonicityWarning(mb.metric.Get(labels.MetricName), args[1].PositionRange()))
|
||||
annos.Add(annotations.NewHistogramQuantileForcedMonotonicityInfo(mb.metric.Get(labels.MetricName), args[1].PositionRange()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -344,37 +344,22 @@ func coalesceBuckets(buckets buckets) buckets {
|
|||
// The assumption that bucket counts increase monotonically with increasing
|
||||
// upperBound may be violated during:
|
||||
//
|
||||
// * Recording rule evaluation of histogram_quantile, especially when rate()
|
||||
// has been applied to the underlying bucket timeseries.
|
||||
// * Evaluation of histogram_quantile computed over federated bucket
|
||||
// timeseries, especially when rate() has been applied.
|
||||
//
|
||||
// This is because scraped data is not made available to rule evaluation or
|
||||
// federation atomically, so some buckets are computed with data from the
|
||||
// most recent scrapes, but the other buckets are missing data from the most
|
||||
// recent scrape.
|
||||
// - Circumstances where data is already inconsistent at the target's side.
|
||||
// - Ingestion via the remote write receiver that Prometheus implements.
|
||||
// - Optimisation of query execution where precision is sacrificed for other
|
||||
// benefits, not by Prometheus but by systems built on top of it.
|
||||
//
|
||||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||||
//
|
||||
// Randomly interspersed partial sampling breaks that guarantee, and rate()
|
||||
// exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
|
||||
// 4 samples but the bucket with le=2000 has a count of 7 from 3 samples. The
|
||||
// monotonicity is broken. It is exacerbated by rate() because under normal
|
||||
// operation, cumulative counting of buckets will cause the bucket counts to
|
||||
// diverge such that small differences from missing samples are not a problem.
|
||||
// rate() removes this divergence.)
|
||||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||||
//
|
||||
// bucketQuantile depends on that monotonicity to do a binary search for the
|
||||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||||
//
|
||||
// As a somewhat hacky solution until ingestion is atomic per scrape, we
|
||||
// calculate the "envelope" of the histogram buckets, essentially removing
|
||||
// any decreases in the count between successive buckets. We return a bool
|
||||
// to indicate if this monotonicity was forced or not.
|
||||
|
||||
// As a somewhat hacky solution, we calculate the "envelope" of the histogram
|
||||
// buckets, essentially removing any decreases in the count between successive
|
||||
// buckets. We return a bool to indicate if this monotonicity was forced or not.
|
||||
func ensureMonotonic(buckets buckets) bool {
|
||||
forced := false
|
||||
max := buckets[0].count
|
||||
|
|
|
@ -100,13 +100,13 @@ var (
|
|||
PromQLInfo = errors.New("PromQL info")
|
||||
PromQLWarning = errors.New("PromQL warning")
|
||||
|
||||
InvalidQuantileWarning = fmt.Errorf("%w: quantile value should be between 0 and 1", PromQLWarning)
|
||||
BadBucketLabelWarning = fmt.Errorf("%w: bucket label %q is missing or has a malformed value", PromQLWarning, model.BucketLabel)
|
||||
MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for metric name", PromQLWarning)
|
||||
MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning)
|
||||
HistogramQuantileForcedMonotonicityWarning = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (and may give inaccurate results) for metric name", PromQLWarning)
|
||||
InvalidQuantileWarning = fmt.Errorf("%w: quantile value should be between 0 and 1", PromQLWarning)
|
||||
BadBucketLabelWarning = fmt.Errorf("%w: bucket label %q is missing or has a malformed value", PromQLWarning, model.BucketLabel)
|
||||
MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for metric name", PromQLWarning)
|
||||
MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning)
|
||||
|
||||
PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count:", PromQLInfo)
|
||||
PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count:", PromQLInfo)
|
||||
HistogramQuantileForcedMonotonicityInfo = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (and may give inaccurate results) for metric name", PromQLInfo)
|
||||
)
|
||||
|
||||
type annoErr struct {
|
||||
|
@ -156,15 +156,6 @@ func NewMixedClassicNativeHistogramsWarning(metricName string, pos posrange.Posi
|
|||
}
|
||||
}
|
||||
|
||||
// NewHistogramQuantileForcedMonotonicityWarning is used when the input (classic histograms) to
|
||||
// histogram_quantile needs to be forced to be monotonic.
|
||||
func NewHistogramQuantileForcedMonotonicityWarning(metricName string, pos posrange.PositionRange) annoErr {
|
||||
return annoErr{
|
||||
PositionRange: pos,
|
||||
Err: fmt.Errorf("%w %q", HistogramQuantileForcedMonotonicityWarning, metricName),
|
||||
}
|
||||
}
|
||||
|
||||
// NewPossibleNonCounterInfo is used when a counter metric does not have the suffixes
|
||||
// _total, _sum or _count.
|
||||
func NewPossibleNonCounterInfo(metricName string, pos posrange.PositionRange) annoErr {
|
||||
|
@ -173,3 +164,12 @@ func NewPossibleNonCounterInfo(metricName string, pos posrange.PositionRange) an
|
|||
Err: fmt.Errorf("%w %q", PossibleNonCounterInfo, metricName),
|
||||
}
|
||||
}
|
||||
|
||||
// NewHistogramQuantileForcedMonotonicityInfo is used when the input (classic histograms) to
|
||||
// histogram_quantile needs to be forced to be monotonic.
|
||||
func NewHistogramQuantileForcedMonotonicityInfo(metricName string, pos posrange.PositionRange) annoErr {
|
||||
return annoErr{
|
||||
PositionRange: pos,
|
||||
Err: fmt.Errorf("%w %q", HistogramQuantileForcedMonotonicityInfo, metricName),
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue