mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-11 13:57:36 -08:00
enhance promtool tsdb analyze command (#12869)
Improve promtool tsdb analyze - Make it more suitable for variable size float chunks. - Add support for histogram chunks. --------- Signed-off-by: Ziqi Zhao <zhaoziqi9146@gmail.com>
This commit is contained in:
parent
c9fce2c6c6
commit
1a6edff882
|
@ -18,7 +18,6 @@ import (
|
||||||
"context"
|
"context"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
"math"
|
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
@ -620,10 +619,12 @@ func analyzeCompaction(ctx context.Context, block tsdb.BlockReader, indexr tsdb.
|
||||||
err = tsdb_errors.NewMulti(err, chunkr.Close()).Err()
|
err = tsdb_errors.NewMulti(err, chunkr.Close()).Err()
|
||||||
}()
|
}()
|
||||||
|
|
||||||
const maxSamplesPerChunk = 120
|
|
||||||
nBuckets := 10
|
|
||||||
histogram := make([]int, nBuckets)
|
|
||||||
totalChunks := 0
|
totalChunks := 0
|
||||||
|
floatChunkSamplesCount := make([]int, 0)
|
||||||
|
floatChunkSize := make([]int, 0)
|
||||||
|
histogramChunkSamplesCount := make([]int, 0)
|
||||||
|
histogramChunkSize := make([]int, 0)
|
||||||
|
histogramChunkBucketsCount := make([]int, 0)
|
||||||
var builder labels.ScratchBuilder
|
var builder labels.ScratchBuilder
|
||||||
for postingsr.Next() {
|
for postingsr.Next() {
|
||||||
var chks []chunks.Meta
|
var chks []chunks.Meta
|
||||||
|
@ -637,26 +638,56 @@ func analyzeCompaction(ctx context.Context, block tsdb.BlockReader, indexr tsdb.
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
chunkSize := math.Min(float64(chk.NumSamples()), maxSamplesPerChunk)
|
switch chk.Encoding() {
|
||||||
// Calculate the bucket for the chunk and increment it in the histogram.
|
case chunkenc.EncXOR:
|
||||||
bucket := int(math.Ceil(float64(nBuckets)*chunkSize/maxSamplesPerChunk)) - 1
|
floatChunkSamplesCount = append(floatChunkSamplesCount, chk.NumSamples())
|
||||||
histogram[bucket]++
|
floatChunkSize = append(floatChunkSize, len(chk.Bytes()))
|
||||||
|
case chunkenc.EncFloatHistogram:
|
||||||
|
histogramChunkSamplesCount = append(histogramChunkSamplesCount, chk.NumSamples())
|
||||||
|
histogramChunkSize = append(histogramChunkSize, len(chk.Bytes()))
|
||||||
|
fhchk, ok := chk.(*chunkenc.FloatHistogramChunk)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("chunk is not FloatHistogramChunk")
|
||||||
|
}
|
||||||
|
it := fhchk.Iterator(nil)
|
||||||
|
bucketCount := 0
|
||||||
|
for it.Next() == chunkenc.ValFloatHistogram {
|
||||||
|
_, f := it.AtFloatHistogram()
|
||||||
|
bucketCount += len(f.PositiveBuckets)
|
||||||
|
bucketCount += len(f.NegativeBuckets)
|
||||||
|
}
|
||||||
|
histogramChunkBucketsCount = append(histogramChunkBucketsCount, bucketCount)
|
||||||
|
case chunkenc.EncHistogram:
|
||||||
|
histogramChunkSamplesCount = append(histogramChunkSamplesCount, chk.NumSamples())
|
||||||
|
histogramChunkSize = append(histogramChunkSize, len(chk.Bytes()))
|
||||||
|
hchk, ok := chk.(*chunkenc.HistogramChunk)
|
||||||
|
if !ok {
|
||||||
|
return fmt.Errorf("chunk is not HistogramChunk")
|
||||||
|
}
|
||||||
|
it := hchk.Iterator(nil)
|
||||||
|
bucketCount := 0
|
||||||
|
for it.Next() == chunkenc.ValHistogram {
|
||||||
|
_, f := it.AtHistogram()
|
||||||
|
bucketCount += len(f.PositiveBuckets)
|
||||||
|
bucketCount += len(f.NegativeBuckets)
|
||||||
|
}
|
||||||
|
histogramChunkBucketsCount = append(histogramChunkBucketsCount, bucketCount)
|
||||||
|
}
|
||||||
totalChunks++
|
totalChunks++
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fmt.Printf("\nCompaction analysis:\n")
|
fmt.Printf("\nCompaction analysis:\n")
|
||||||
fmt.Println("Fullness: Amount of samples in chunks (100% is 120 samples)")
|
|
||||||
// Normalize absolute counts to percentages and print them out.
|
|
||||||
for bucket, count := range histogram {
|
|
||||||
percentage := 100.0 * count / totalChunks
|
|
||||||
fmt.Printf("%7d%%: ", (bucket+1)*10)
|
|
||||||
for j := 0; j < percentage; j++ {
|
|
||||||
fmt.Printf("#")
|
|
||||||
}
|
|
||||||
fmt.Println()
|
fmt.Println()
|
||||||
}
|
displayHistogram("samples per float chunk", floatChunkSamplesCount, totalChunks)
|
||||||
|
|
||||||
|
displayHistogram("bytes per float chunk", floatChunkSize, totalChunks)
|
||||||
|
|
||||||
|
displayHistogram("samples per histogram chunk", histogramChunkSamplesCount, totalChunks)
|
||||||
|
|
||||||
|
displayHistogram("bytes per histogram chunk", histogramChunkSize, totalChunks)
|
||||||
|
|
||||||
|
displayHistogram("buckets per histogram chunk", histogramChunkBucketsCount, totalChunks)
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -732,3 +763,42 @@ func backfillOpenMetrics(path, outputDir string, humanReadable, quiet bool, maxB
|
||||||
|
|
||||||
return checkErr(backfill(5000, inputFile.Bytes(), outputDir, humanReadable, quiet, maxBlockDuration))
|
return checkErr(backfill(5000, inputFile.Bytes(), outputDir, humanReadable, quiet, maxBlockDuration))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func displayHistogram(dataType string, datas []int, total int) {
|
||||||
|
slices.Sort(datas)
|
||||||
|
start, end, step := generateBucket(datas[0], datas[len(datas)-1])
|
||||||
|
sum := 0
|
||||||
|
buckets := make([]int, (end-start)/step+1)
|
||||||
|
maxCount := 0
|
||||||
|
for _, c := range datas {
|
||||||
|
sum += c
|
||||||
|
buckets[(c-start)/step]++
|
||||||
|
if buckets[(c-start)/step] > maxCount {
|
||||||
|
maxCount = buckets[(c-start)/step]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
avg := sum / len(datas)
|
||||||
|
fmt.Printf("%s (min/avg/max): %d/%d/%d\n", dataType, datas[0], avg, datas[len(datas)-1])
|
||||||
|
maxLeftLen := strconv.Itoa(len(fmt.Sprintf("%d", end)))
|
||||||
|
maxRightLen := strconv.Itoa(len(fmt.Sprintf("%d", end+step)))
|
||||||
|
maxCountLen := strconv.Itoa(len(fmt.Sprintf("%d", maxCount)))
|
||||||
|
for bucket, count := range buckets {
|
||||||
|
percentage := 100.0 * count / total
|
||||||
|
fmt.Printf("[%"+maxLeftLen+"d, %"+maxRightLen+"d]: %"+maxCountLen+"d %s\n", bucket*step+start+1, (bucket+1)*step+start, count, strings.Repeat("#", percentage))
|
||||||
|
}
|
||||||
|
fmt.Println()
|
||||||
|
}
|
||||||
|
|
||||||
|
func generateBucket(min, max int) (start, end, step int) {
|
||||||
|
s := (max - min) / 10
|
||||||
|
|
||||||
|
step = 10
|
||||||
|
for step < s && step <= 10000 {
|
||||||
|
step *= 10
|
||||||
|
}
|
||||||
|
|
||||||
|
start = min - min%step
|
||||||
|
end = max - max%step + step
|
||||||
|
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
43
cmd/promtool/tsdb_test.go
Normal file
43
cmd/promtool/tsdb_test.go
Normal file
|
@ -0,0 +1,43 @@
|
||||||
|
// Copyright 2017 The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestGenerateBucket(t *testing.T) {
|
||||||
|
tcs := []struct {
|
||||||
|
min, max int
|
||||||
|
start, end, step int
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
min: 101,
|
||||||
|
max: 141,
|
||||||
|
start: 100,
|
||||||
|
end: 150,
|
||||||
|
step: 10,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range tcs {
|
||||||
|
start, end, step := generateBucket(tc.min, tc.max)
|
||||||
|
|
||||||
|
require.Equal(t, tc.start, start)
|
||||||
|
require.Equal(t, tc.end, end)
|
||||||
|
require.Equal(t, tc.step, step)
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in a new issue