mirror of
https://github.com/prometheus/prometheus.git
synced 2025-03-05 20:59:13 -08:00
Merge pull request #13744 from bboreham/wip-aggr-index
[ENHANCEMENT] PromQL: Re-structure aggregations for clarity and performance
This commit is contained in:
commit
2278d2377c
646
promql/engine.go
646
promql/engine.go
|
@ -1067,8 +1067,6 @@ func (ev *evaluator) Eval(expr parser.Expr) (v parser.Value, ws annotations.Anno
|
||||||
|
|
||||||
// EvalSeriesHelper stores extra information about a series.
|
// EvalSeriesHelper stores extra information about a series.
|
||||||
type EvalSeriesHelper struct {
|
type EvalSeriesHelper struct {
|
||||||
// The grouping key used by aggregation.
|
|
||||||
groupingKey uint64
|
|
||||||
// Used to map left-hand to right-hand in binary operations.
|
// Used to map left-hand to right-hand in binary operations.
|
||||||
signature string
|
signature string
|
||||||
}
|
}
|
||||||
|
@ -1259,17 +1257,7 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
||||||
} else {
|
} else {
|
||||||
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
||||||
}
|
}
|
||||||
if sample.H == nil {
|
addToSeries(&ss.Series, enh.Ts, sample.F, sample.H, numSteps)
|
||||||
if ss.Floats == nil {
|
|
||||||
ss.Floats = getFPointSlice(numSteps)
|
|
||||||
}
|
|
||||||
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
|
||||||
} else {
|
|
||||||
if ss.Histograms == nil {
|
|
||||||
ss.Histograms = getHPointSlice(numSteps)
|
|
||||||
}
|
|
||||||
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
|
||||||
}
|
|
||||||
seriess[h] = ss
|
seriess[h] = ss
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1291,6 +1279,116 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
||||||
return mat, warnings
|
return mat, warnings
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string, inputMatrix Matrix, param float64) (Matrix, annotations.Annotations) {
|
||||||
|
// Keep a copy of the original point slice so that it can be returned to the pool.
|
||||||
|
origMatrix := slices.Clone(inputMatrix)
|
||||||
|
defer func() {
|
||||||
|
for _, s := range origMatrix {
|
||||||
|
putFPointSlice(s.Floats)
|
||||||
|
putHPointSlice(s.Histograms)
|
||||||
|
}
|
||||||
|
}()
|
||||||
|
|
||||||
|
var warnings annotations.Annotations
|
||||||
|
|
||||||
|
enh := &EvalNodeHelper{}
|
||||||
|
tempNumSamples := ev.currentSamples
|
||||||
|
|
||||||
|
// Create a mapping from input series to output groups.
|
||||||
|
buf := make([]byte, 0, 1024)
|
||||||
|
groupToResultIndex := make(map[uint64]int)
|
||||||
|
seriesToResult := make([]int, len(inputMatrix))
|
||||||
|
var result Matrix
|
||||||
|
|
||||||
|
groupCount := 0
|
||||||
|
for si, series := range inputMatrix {
|
||||||
|
var groupingKey uint64
|
||||||
|
groupingKey, buf = generateGroupingKey(series.Metric, sortedGrouping, aggExpr.Without, buf)
|
||||||
|
index, ok := groupToResultIndex[groupingKey]
|
||||||
|
// Add a new group if it doesn't exist.
|
||||||
|
if !ok {
|
||||||
|
if aggExpr.Op != parser.TOPK && aggExpr.Op != parser.BOTTOMK {
|
||||||
|
m := generateGroupingLabels(enh, series.Metric, aggExpr.Without, sortedGrouping)
|
||||||
|
result = append(result, Series{Metric: m})
|
||||||
|
}
|
||||||
|
index = groupCount
|
||||||
|
groupToResultIndex[groupingKey] = index
|
||||||
|
groupCount++
|
||||||
|
}
|
||||||
|
seriesToResult[si] = index
|
||||||
|
}
|
||||||
|
groups := make([]groupedAggregation, groupCount)
|
||||||
|
|
||||||
|
var k int
|
||||||
|
var seriess map[uint64]Series
|
||||||
|
switch aggExpr.Op {
|
||||||
|
case parser.TOPK, parser.BOTTOMK:
|
||||||
|
if !convertibleToInt64(param) {
|
||||||
|
ev.errorf("Scalar value %v overflows int64", param)
|
||||||
|
}
|
||||||
|
k = int(param)
|
||||||
|
if k > len(inputMatrix) {
|
||||||
|
k = len(inputMatrix)
|
||||||
|
}
|
||||||
|
if k < 1 {
|
||||||
|
return nil, warnings
|
||||||
|
}
|
||||||
|
seriess = make(map[uint64]Series, len(inputMatrix)) // Output series by series hash.
|
||||||
|
case parser.QUANTILE:
|
||||||
|
if math.IsNaN(param) || param < 0 || param > 1 {
|
||||||
|
warnings.Add(annotations.NewInvalidQuantileWarning(param, aggExpr.Param.PositionRange()))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||||
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
||||||
|
ev.error(err)
|
||||||
|
}
|
||||||
|
// Reset number of samples in memory after each timestamp.
|
||||||
|
ev.currentSamples = tempNumSamples
|
||||||
|
|
||||||
|
// Make the function call.
|
||||||
|
enh.Ts = ts
|
||||||
|
var ws annotations.Annotations
|
||||||
|
switch aggExpr.Op {
|
||||||
|
case parser.TOPK, parser.BOTTOMK:
|
||||||
|
result, ws = ev.aggregationK(aggExpr, k, inputMatrix, seriesToResult, groups, enh, seriess)
|
||||||
|
// If this could be an instant query, shortcut so as not to change sort order.
|
||||||
|
if ev.endTimestamp == ev.startTimestamp {
|
||||||
|
return result, ws
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
ws = ev.aggregation(aggExpr, param, inputMatrix, result, seriesToResult, groups, enh)
|
||||||
|
}
|
||||||
|
|
||||||
|
warnings.Merge(ws)
|
||||||
|
|
||||||
|
if ev.currentSamples > ev.maxSamples {
|
||||||
|
ev.error(ErrTooManySamples(env))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||||
|
switch aggExpr.Op {
|
||||||
|
case parser.TOPK, parser.BOTTOMK:
|
||||||
|
result = make(Matrix, 0, len(seriess))
|
||||||
|
for _, ss := range seriess {
|
||||||
|
result = append(result, ss)
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
// Remove empty result rows.
|
||||||
|
dst := 0
|
||||||
|
for _, series := range result {
|
||||||
|
if len(series.Floats) > 0 || len(series.Histograms) > 0 {
|
||||||
|
result[dst] = series
|
||||||
|
dst++
|
||||||
|
}
|
||||||
|
}
|
||||||
|
result = result[:dst]
|
||||||
|
}
|
||||||
|
return result, warnings
|
||||||
|
}
|
||||||
|
|
||||||
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
|
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
|
||||||
// evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set.
|
// evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set.
|
||||||
func (ev *evaluator) evalSubquery(subq *parser.SubqueryExpr) (*parser.MatrixSelector, int, annotations.Annotations) {
|
func (ev *evaluator) evalSubquery(subq *parser.SubqueryExpr) (*parser.MatrixSelector, int, annotations.Annotations) {
|
||||||
|
@ -1343,28 +1441,44 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, annotations.Annotatio
|
||||||
sortedGrouping := e.Grouping
|
sortedGrouping := e.Grouping
|
||||||
slices.Sort(sortedGrouping)
|
slices.Sort(sortedGrouping)
|
||||||
|
|
||||||
// Prepare a function to initialise series helpers with the grouping key.
|
|
||||||
buf := make([]byte, 0, 1024)
|
|
||||||
initSeries := func(series labels.Labels, h *EvalSeriesHelper) {
|
|
||||||
h.groupingKey, buf = generateGroupingKey(series, sortedGrouping, e.Without, buf)
|
|
||||||
}
|
|
||||||
|
|
||||||
unwrapParenExpr(&e.Param)
|
unwrapParenExpr(&e.Param)
|
||||||
param := unwrapStepInvariantExpr(e.Param)
|
param := unwrapStepInvariantExpr(e.Param)
|
||||||
unwrapParenExpr(¶m)
|
unwrapParenExpr(¶m)
|
||||||
if s, ok := param.(*parser.StringLiteral); ok {
|
|
||||||
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
if e.Op == parser.COUNT_VALUES {
|
||||||
return ev.aggregation(e, sortedGrouping, s.Val, v[0].(Vector), sh[0], enh)
|
valueLabel := param.(*parser.StringLiteral)
|
||||||
|
if !model.LabelName(valueLabel.Val).IsValid() {
|
||||||
|
ev.errorf("invalid label name %q", valueLabel)
|
||||||
|
}
|
||||||
|
if !e.Without {
|
||||||
|
sortedGrouping = append(sortedGrouping, valueLabel.Val)
|
||||||
|
slices.Sort(sortedGrouping)
|
||||||
|
}
|
||||||
|
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||||
|
return ev.aggregationCountValues(e, sortedGrouping, valueLabel.Val, v[0].(Vector), enh)
|
||||||
}, e.Expr)
|
}, e.Expr)
|
||||||
}
|
}
|
||||||
|
|
||||||
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
var warnings annotations.Annotations
|
||||||
var param float64
|
originalNumSamples := ev.currentSamples
|
||||||
if e.Param != nil {
|
// param is the number k for topk/bottomk, or q for quantile.
|
||||||
param = v[0].(Vector)[0].F
|
var fParam float64
|
||||||
}
|
if param != nil {
|
||||||
return ev.aggregation(e, sortedGrouping, param, v[1].(Vector), sh[1], enh)
|
val, ws := ev.eval(param)
|
||||||
}, e.Param, e.Expr)
|
warnings.Merge(ws)
|
||||||
|
fParam = val.(Matrix)[0].Floats[0].F
|
||||||
|
}
|
||||||
|
// Now fetch the data to be aggregated.
|
||||||
|
val, ws := ev.eval(e.Expr)
|
||||||
|
warnings.Merge(ws)
|
||||||
|
inputMatrix := val.(Matrix)
|
||||||
|
|
||||||
|
result, ws := ev.rangeEvalAgg(e, sortedGrouping, inputMatrix, fParam)
|
||||||
|
warnings.Merge(ws)
|
||||||
|
ev.currentSamples = originalNumSamples + result.TotalSamples()
|
||||||
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||||
|
|
||||||
|
return result, warnings
|
||||||
|
|
||||||
case *parser.Call:
|
case *parser.Call:
|
||||||
call := FunctionCalls[e.Func.Name]
|
call := FunctionCalls[e.Func.Name]
|
||||||
|
@ -2614,171 +2728,85 @@ func vectorElemBinop(op parser.ItemType, lhs, rhs float64, hlhs, hrhs *histogram
|
||||||
}
|
}
|
||||||
|
|
||||||
type groupedAggregation struct {
|
type groupedAggregation struct {
|
||||||
|
seen bool // Was this output groups seen in the input at this timestamp.
|
||||||
hasFloat bool // Has at least 1 float64 sample aggregated.
|
hasFloat bool // Has at least 1 float64 sample aggregated.
|
||||||
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
||||||
labels labels.Labels
|
|
||||||
floatValue float64
|
floatValue float64
|
||||||
histogramValue *histogram.FloatHistogram
|
histogramValue *histogram.FloatHistogram
|
||||||
floatMean float64
|
floatMean float64
|
||||||
histogramMean *histogram.FloatHistogram
|
|
||||||
groupCount int
|
groupCount int
|
||||||
heap vectorByValueHeap
|
heap vectorByValueHeap
|
||||||
reverseHeap vectorByReverseValueHeap
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// aggregation evaluates an aggregation operation on a Vector. The provided grouping labels
|
// aggregation evaluates sum, avg, count, stdvar, stddev or quantile at one timestep on inputMatrix.
|
||||||
// must be sorted.
|
// These functions produce one output series for each group specified in the expression, with just the labels from `by(...)`.
|
||||||
func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, param interface{}, vec Vector, seriesHelper []EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
// outputMatrix should be already populated with grouping labels; groups is one-to-one with outputMatrix.
|
||||||
|
// seriesToResult maps inputMatrix indexes to outputMatrix indexes.
|
||||||
|
func (ev *evaluator) aggregation(e *parser.AggregateExpr, q float64, inputMatrix, outputMatrix Matrix, seriesToResult []int, groups []groupedAggregation, enh *EvalNodeHelper) annotations.Annotations {
|
||||||
op := e.Op
|
op := e.Op
|
||||||
without := e.Without
|
|
||||||
var annos annotations.Annotations
|
var annos annotations.Annotations
|
||||||
result := map[uint64]*groupedAggregation{}
|
for i := range groups {
|
||||||
orderedResult := []*groupedAggregation{}
|
groups[i].seen = false
|
||||||
var k int64
|
|
||||||
if op == parser.TOPK || op == parser.BOTTOMK {
|
|
||||||
f := param.(float64)
|
|
||||||
if !convertibleToInt64(f) {
|
|
||||||
ev.errorf("Scalar value %v overflows int64", f)
|
|
||||||
}
|
|
||||||
k = int64(f)
|
|
||||||
if k < 1 {
|
|
||||||
return Vector{}, annos
|
|
||||||
}
|
|
||||||
}
|
|
||||||
var q float64
|
|
||||||
if op == parser.QUANTILE {
|
|
||||||
q = param.(float64)
|
|
||||||
}
|
|
||||||
var valueLabel string
|
|
||||||
var recomputeGroupingKey bool
|
|
||||||
if op == parser.COUNT_VALUES {
|
|
||||||
valueLabel = param.(string)
|
|
||||||
if !model.LabelName(valueLabel).IsValid() {
|
|
||||||
ev.errorf("invalid label name %q", valueLabel)
|
|
||||||
}
|
|
||||||
if !without {
|
|
||||||
// We're changing the grouping labels so we have to ensure they're still sorted
|
|
||||||
// and we have to flag to recompute the grouping key. Considering the count_values()
|
|
||||||
// operator is less frequently used than other aggregations, we're fine having to
|
|
||||||
// re-compute the grouping key on each step for this case.
|
|
||||||
grouping = append(grouping, valueLabel)
|
|
||||||
slices.Sort(grouping)
|
|
||||||
recomputeGroupingKey = true
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
var buf []byte
|
for si := range inputMatrix {
|
||||||
for si, s := range vec {
|
f, h, ok := ev.nextValues(enh.Ts, &inputMatrix[si])
|
||||||
metric := s.Metric
|
|
||||||
|
|
||||||
if op == parser.COUNT_VALUES {
|
|
||||||
enh.resetBuilder(metric)
|
|
||||||
enh.lb.Set(valueLabel, strconv.FormatFloat(s.F, 'f', -1, 64))
|
|
||||||
metric = enh.lb.Labels()
|
|
||||||
|
|
||||||
// We've changed the metric so we have to recompute the grouping key.
|
|
||||||
recomputeGroupingKey = true
|
|
||||||
}
|
|
||||||
|
|
||||||
// We can use the pre-computed grouping key unless grouping labels have changed.
|
|
||||||
var groupingKey uint64
|
|
||||||
if !recomputeGroupingKey {
|
|
||||||
groupingKey = seriesHelper[si].groupingKey
|
|
||||||
} else {
|
|
||||||
groupingKey, buf = generateGroupingKey(metric, grouping, without, buf)
|
|
||||||
}
|
|
||||||
|
|
||||||
group, ok := result[groupingKey]
|
|
||||||
// Add a new group if it doesn't exist.
|
|
||||||
if !ok {
|
if !ok {
|
||||||
var m labels.Labels
|
continue
|
||||||
enh.resetBuilder(metric)
|
}
|
||||||
switch {
|
|
||||||
case without:
|
group := &groups[seriesToResult[si]]
|
||||||
enh.lb.Del(grouping...)
|
// Initialize this group if it's the first time we've seen it.
|
||||||
enh.lb.Del(labels.MetricName)
|
if !group.seen {
|
||||||
m = enh.lb.Labels()
|
*group = groupedAggregation{
|
||||||
case len(grouping) > 0:
|
seen: true,
|
||||||
enh.lb.Keep(grouping...)
|
floatValue: f,
|
||||||
m = enh.lb.Labels()
|
floatMean: f,
|
||||||
default:
|
|
||||||
m = labels.EmptyLabels()
|
|
||||||
}
|
|
||||||
newAgg := &groupedAggregation{
|
|
||||||
labels: m,
|
|
||||||
floatValue: s.F,
|
|
||||||
floatMean: s.F,
|
|
||||||
groupCount: 1,
|
groupCount: 1,
|
||||||
}
|
}
|
||||||
switch {
|
|
||||||
case s.H == nil:
|
|
||||||
newAgg.hasFloat = true
|
|
||||||
case op == parser.SUM:
|
|
||||||
newAgg.histogramValue = s.H.Copy()
|
|
||||||
newAgg.hasHistogram = true
|
|
||||||
case op == parser.AVG:
|
|
||||||
newAgg.histogramMean = s.H.Copy()
|
|
||||||
newAgg.hasHistogram = true
|
|
||||||
case op == parser.STDVAR || op == parser.STDDEV:
|
|
||||||
newAgg.groupCount = 0
|
|
||||||
}
|
|
||||||
|
|
||||||
result[groupingKey] = newAgg
|
|
||||||
orderedResult = append(orderedResult, newAgg)
|
|
||||||
|
|
||||||
inputVecLen := int64(len(vec))
|
|
||||||
resultSize := k
|
|
||||||
switch {
|
|
||||||
case k > inputVecLen:
|
|
||||||
resultSize = inputVecLen
|
|
||||||
case k == 0:
|
|
||||||
resultSize = 1
|
|
||||||
}
|
|
||||||
switch op {
|
switch op {
|
||||||
|
case parser.SUM, parser.AVG:
|
||||||
|
if h == nil {
|
||||||
|
group.hasFloat = true
|
||||||
|
} else {
|
||||||
|
group.histogramValue = h.Copy()
|
||||||
|
group.hasHistogram = true
|
||||||
|
}
|
||||||
case parser.STDVAR, parser.STDDEV:
|
case parser.STDVAR, parser.STDDEV:
|
||||||
result[groupingKey].floatValue = 0
|
group.floatValue = 0
|
||||||
case parser.TOPK, parser.QUANTILE:
|
case parser.QUANTILE:
|
||||||
result[groupingKey].heap = make(vectorByValueHeap, 1, resultSize)
|
group.heap = make(vectorByValueHeap, 1)
|
||||||
result[groupingKey].heap[0] = Sample{
|
group.heap[0] = Sample{F: f}
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
}
|
|
||||||
case parser.BOTTOMK:
|
|
||||||
result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 1, resultSize)
|
|
||||||
result[groupingKey].reverseHeap[0] = Sample{
|
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
}
|
|
||||||
case parser.GROUP:
|
case parser.GROUP:
|
||||||
result[groupingKey].floatValue = 1
|
group.floatValue = 1
|
||||||
}
|
}
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
switch op {
|
switch op {
|
||||||
case parser.SUM:
|
case parser.SUM:
|
||||||
if s.H != nil {
|
if h != nil {
|
||||||
group.hasHistogram = true
|
group.hasHistogram = true
|
||||||
if group.histogramValue != nil {
|
if group.histogramValue != nil {
|
||||||
group.histogramValue.Add(s.H)
|
group.histogramValue.Add(h)
|
||||||
}
|
}
|
||||||
// Otherwise the aggregation contained floats
|
// Otherwise the aggregation contained floats
|
||||||
// previously and will be invalid anyway. No
|
// previously and will be invalid anyway. No
|
||||||
// point in copying the histogram in that case.
|
// point in copying the histogram in that case.
|
||||||
} else {
|
} else {
|
||||||
group.hasFloat = true
|
group.hasFloat = true
|
||||||
group.floatValue += s.F
|
group.floatValue += f
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.AVG:
|
case parser.AVG:
|
||||||
group.groupCount++
|
group.groupCount++
|
||||||
if s.H != nil {
|
if h != nil {
|
||||||
group.hasHistogram = true
|
group.hasHistogram = true
|
||||||
if group.histogramMean != nil {
|
if group.histogramValue != nil {
|
||||||
left := s.H.Copy().Div(float64(group.groupCount))
|
left := h.Copy().Div(float64(group.groupCount))
|
||||||
right := group.histogramMean.Copy().Div(float64(group.groupCount))
|
right := group.histogramValue.Copy().Div(float64(group.groupCount))
|
||||||
toAdd := left.Sub(right)
|
toAdd := left.Sub(right)
|
||||||
group.histogramMean.Add(toAdd)
|
group.histogramValue.Add(toAdd)
|
||||||
}
|
}
|
||||||
// Otherwise the aggregation contained floats
|
// Otherwise the aggregation contained floats
|
||||||
// previously and will be invalid anyway. No
|
// previously and will be invalid anyway. No
|
||||||
|
@ -2786,13 +2814,13 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
||||||
} else {
|
} else {
|
||||||
group.hasFloat = true
|
group.hasFloat = true
|
||||||
if math.IsInf(group.floatMean, 0) {
|
if math.IsInf(group.floatMean, 0) {
|
||||||
if math.IsInf(s.F, 0) && (group.floatMean > 0) == (s.F > 0) {
|
if math.IsInf(f, 0) && (group.floatMean > 0) == (f > 0) {
|
||||||
// The `floatMean` and `s.F` values are `Inf` of the same sign. They
|
// The `floatMean` and `s.F` values are `Inf` of the same sign. They
|
||||||
// can't be subtracted, but the value of `floatMean` is correct
|
// can't be subtracted, but the value of `floatMean` is correct
|
||||||
// already.
|
// already.
|
||||||
break
|
break
|
||||||
}
|
}
|
||||||
if !math.IsInf(s.F, 0) && !math.IsNaN(s.F) {
|
if !math.IsInf(f, 0) && !math.IsNaN(f) {
|
||||||
// At this stage, the mean is an infinite. If the added
|
// At this stage, the mean is an infinite. If the added
|
||||||
// value is neither an Inf or a Nan, we can keep that mean
|
// value is neither an Inf or a Nan, we can keep that mean
|
||||||
// value.
|
// value.
|
||||||
|
@ -2803,81 +2831,48 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
|
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
|
||||||
group.floatMean += s.F/float64(group.groupCount) - group.floatMean/float64(group.groupCount)
|
group.floatMean += f/float64(group.groupCount) - group.floatMean/float64(group.groupCount)
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.GROUP:
|
case parser.GROUP:
|
||||||
// Do nothing. Required to avoid the panic in `default:` below.
|
// Do nothing. Required to avoid the panic in `default:` below.
|
||||||
|
|
||||||
case parser.MAX:
|
case parser.MAX:
|
||||||
if group.floatValue < s.F || math.IsNaN(group.floatValue) {
|
if group.floatValue < f || math.IsNaN(group.floatValue) {
|
||||||
group.floatValue = s.F
|
group.floatValue = f
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.MIN:
|
case parser.MIN:
|
||||||
if group.floatValue > s.F || math.IsNaN(group.floatValue) {
|
if group.floatValue > f || math.IsNaN(group.floatValue) {
|
||||||
group.floatValue = s.F
|
group.floatValue = f
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.COUNT, parser.COUNT_VALUES:
|
case parser.COUNT:
|
||||||
group.groupCount++
|
group.groupCount++
|
||||||
|
|
||||||
case parser.STDVAR, parser.STDDEV:
|
case parser.STDVAR, parser.STDDEV:
|
||||||
if s.H == nil { // Ignore native histograms.
|
if h == nil { // Ignore native histograms.
|
||||||
group.groupCount++
|
group.groupCount++
|
||||||
delta := s.F - group.floatMean
|
delta := f - group.floatMean
|
||||||
group.floatMean += delta / float64(group.groupCount)
|
group.floatMean += delta / float64(group.groupCount)
|
||||||
group.floatValue += delta * (s.F - group.floatMean)
|
group.floatValue += delta * (f - group.floatMean)
|
||||||
}
|
|
||||||
|
|
||||||
case parser.TOPK:
|
|
||||||
// We build a heap of up to k elements, with the smallest element at heap[0].
|
|
||||||
switch {
|
|
||||||
case int64(len(group.heap)) < k:
|
|
||||||
heap.Push(&group.heap, &Sample{
|
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
})
|
|
||||||
case group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
|
||||||
// This new element is bigger than the previous smallest element - overwrite that.
|
|
||||||
group.heap[0] = Sample{
|
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
}
|
|
||||||
if k > 1 {
|
|
||||||
heap.Fix(&group.heap, 0) // Maintain the heap invariant.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
case parser.BOTTOMK:
|
|
||||||
// We build a heap of up to k elements, with the biggest element at heap[0].
|
|
||||||
switch {
|
|
||||||
case int64(len(group.reverseHeap)) < k:
|
|
||||||
heap.Push(&group.reverseHeap, &Sample{
|
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
})
|
|
||||||
case group.reverseHeap[0].F > s.F || (math.IsNaN(group.reverseHeap[0].F) && !math.IsNaN(s.F)):
|
|
||||||
// This new element is smaller than the previous biggest element - overwrite that.
|
|
||||||
group.reverseHeap[0] = Sample{
|
|
||||||
F: s.F,
|
|
||||||
Metric: s.Metric,
|
|
||||||
}
|
|
||||||
if k > 1 {
|
|
||||||
heap.Fix(&group.reverseHeap, 0) // Maintain the heap invariant.
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.QUANTILE:
|
case parser.QUANTILE:
|
||||||
group.heap = append(group.heap, s)
|
group.heap = append(group.heap, Sample{F: f})
|
||||||
|
|
||||||
default:
|
default:
|
||||||
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Construct the result Vector from the aggregated groups.
|
// Construct the output matrix from the aggregated groups.
|
||||||
for _, aggr := range orderedResult {
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||||
|
|
||||||
|
for ri, aggr := range groups {
|
||||||
|
if !aggr.seen {
|
||||||
|
continue
|
||||||
|
}
|
||||||
switch op {
|
switch op {
|
||||||
case parser.AVG:
|
case parser.AVG:
|
||||||
if aggr.hasFloat && aggr.hasHistogram {
|
if aggr.hasFloat && aggr.hasHistogram {
|
||||||
|
@ -2886,12 +2881,12 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
if aggr.hasHistogram {
|
if aggr.hasHistogram {
|
||||||
aggr.histogramValue = aggr.histogramMean.Compact(0)
|
aggr.histogramValue = aggr.histogramValue.Compact(0)
|
||||||
} else {
|
} else {
|
||||||
aggr.floatValue = aggr.floatMean
|
aggr.floatValue = aggr.floatMean
|
||||||
}
|
}
|
||||||
|
|
||||||
case parser.COUNT, parser.COUNT_VALUES:
|
case parser.COUNT:
|
||||||
aggr.floatValue = float64(aggr.groupCount)
|
aggr.floatValue = float64(aggr.groupCount)
|
||||||
|
|
||||||
case parser.STDVAR:
|
case parser.STDVAR:
|
||||||
|
@ -2900,36 +2895,7 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
||||||
case parser.STDDEV:
|
case parser.STDDEV:
|
||||||
aggr.floatValue = math.Sqrt(aggr.floatValue / float64(aggr.groupCount))
|
aggr.floatValue = math.Sqrt(aggr.floatValue / float64(aggr.groupCount))
|
||||||
|
|
||||||
case parser.TOPK:
|
|
||||||
// The heap keeps the lowest value on top, so reverse it.
|
|
||||||
if len(aggr.heap) > 1 {
|
|
||||||
sort.Sort(sort.Reverse(aggr.heap))
|
|
||||||
}
|
|
||||||
for _, v := range aggr.heap {
|
|
||||||
enh.Out = append(enh.Out, Sample{
|
|
||||||
Metric: v.Metric,
|
|
||||||
F: v.F,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
continue // Bypass default append.
|
|
||||||
|
|
||||||
case parser.BOTTOMK:
|
|
||||||
// The heap keeps the highest value on top, so reverse it.
|
|
||||||
if len(aggr.reverseHeap) > 1 {
|
|
||||||
sort.Sort(sort.Reverse(aggr.reverseHeap))
|
|
||||||
}
|
|
||||||
for _, v := range aggr.reverseHeap {
|
|
||||||
enh.Out = append(enh.Out, Sample{
|
|
||||||
Metric: v.Metric,
|
|
||||||
F: v.F,
|
|
||||||
})
|
|
||||||
}
|
|
||||||
continue // Bypass default append.
|
|
||||||
|
|
||||||
case parser.QUANTILE:
|
case parser.QUANTILE:
|
||||||
if math.IsNaN(q) || q < 0 || q > 1 {
|
|
||||||
annos.Add(annotations.NewInvalidQuantileWarning(q, e.Param.PositionRange()))
|
|
||||||
}
|
|
||||||
aggr.floatValue = quantile(q, aggr.heap)
|
aggr.floatValue = quantile(q, aggr.heap)
|
||||||
|
|
||||||
case parser.SUM:
|
case parser.SUM:
|
||||||
|
@ -2945,13 +2911,196 @@ func (ev *evaluator) aggregation(e *parser.AggregateExpr, grouping []string, par
|
||||||
// For other aggregations, we already have the right value.
|
// For other aggregations, we already have the right value.
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ss := &outputMatrix[ri]
|
||||||
|
addToSeries(ss, enh.Ts, aggr.floatValue, aggr.histogramValue, numSteps)
|
||||||
|
}
|
||||||
|
|
||||||
|
return annos
|
||||||
|
}
|
||||||
|
|
||||||
|
// aggregationK evaluates topk or bottomk at one timestep on inputMatrix.
|
||||||
|
// Output that has the same labels as the input, but just k of them per group.
|
||||||
|
// seriesToResult maps inputMatrix indexes to groups indexes.
|
||||||
|
// For an instant query, returns a Matrix in descending order for topk or ascending for bottomk.
|
||||||
|
// For a range query, aggregates output in the seriess map.
|
||||||
|
func (ev *evaluator) aggregationK(e *parser.AggregateExpr, k int, inputMatrix Matrix, seriesToResult []int, groups []groupedAggregation, enh *EvalNodeHelper, seriess map[uint64]Series) (Matrix, annotations.Annotations) {
|
||||||
|
op := e.Op
|
||||||
|
var s Sample
|
||||||
|
var annos annotations.Annotations
|
||||||
|
for i := range groups {
|
||||||
|
groups[i].seen = false
|
||||||
|
}
|
||||||
|
|
||||||
|
for si := range inputMatrix {
|
||||||
|
f, _, ok := ev.nextValues(enh.Ts, &inputMatrix[si])
|
||||||
|
if !ok {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
s = Sample{Metric: inputMatrix[si].Metric, F: f}
|
||||||
|
|
||||||
|
group := &groups[seriesToResult[si]]
|
||||||
|
// Initialize this group if it's the first time we've seen it.
|
||||||
|
if !group.seen {
|
||||||
|
*group = groupedAggregation{
|
||||||
|
seen: true,
|
||||||
|
heap: make(vectorByValueHeap, 1, k),
|
||||||
|
}
|
||||||
|
group.heap[0] = s
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
switch op {
|
||||||
|
case parser.TOPK:
|
||||||
|
// We build a heap of up to k elements, with the smallest element at heap[0].
|
||||||
|
switch {
|
||||||
|
case len(group.heap) < k:
|
||||||
|
heap.Push(&group.heap, &s)
|
||||||
|
case group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
||||||
|
// This new element is bigger than the previous smallest element - overwrite that.
|
||||||
|
group.heap[0] = s
|
||||||
|
if k > 1 {
|
||||||
|
heap.Fix(&group.heap, 0) // Maintain the heap invariant.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
case parser.BOTTOMK:
|
||||||
|
// We build a heap of up to k elements, with the biggest element at heap[0].
|
||||||
|
switch {
|
||||||
|
case len(group.heap) < k:
|
||||||
|
heap.Push((*vectorByReverseValueHeap)(&group.heap), &s)
|
||||||
|
case group.heap[0].F > s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)):
|
||||||
|
// This new element is smaller than the previous biggest element - overwrite that.
|
||||||
|
group.heap[0] = s
|
||||||
|
if k > 1 {
|
||||||
|
heap.Fix((*vectorByReverseValueHeap)(&group.heap), 0) // Maintain the heap invariant.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
default:
|
||||||
|
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Construct the result from the aggregated groups.
|
||||||
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||||
|
var mat Matrix
|
||||||
|
if ev.endTimestamp == ev.startTimestamp {
|
||||||
|
mat = make(Matrix, 0, len(groups))
|
||||||
|
}
|
||||||
|
|
||||||
|
add := func(lbls labels.Labels, f float64) {
|
||||||
|
// If this could be an instant query, add directly to the matrix so the result is in consistent order.
|
||||||
|
if ev.endTimestamp == ev.startTimestamp {
|
||||||
|
mat = append(mat, Series{Metric: lbls, Floats: []FPoint{{T: enh.Ts, F: f}}})
|
||||||
|
} else {
|
||||||
|
// Otherwise the results are added into seriess elements.
|
||||||
|
hash := lbls.Hash()
|
||||||
|
ss, ok := seriess[hash]
|
||||||
|
if !ok {
|
||||||
|
ss = Series{Metric: lbls}
|
||||||
|
}
|
||||||
|
addToSeries(&ss, enh.Ts, f, nil, numSteps)
|
||||||
|
seriess[hash] = ss
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for _, aggr := range groups {
|
||||||
|
if !aggr.seen {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
switch op {
|
||||||
|
case parser.TOPK:
|
||||||
|
// The heap keeps the lowest value on top, so reverse it.
|
||||||
|
if len(aggr.heap) > 1 {
|
||||||
|
sort.Sort(sort.Reverse(aggr.heap))
|
||||||
|
}
|
||||||
|
for _, v := range aggr.heap {
|
||||||
|
add(v.Metric, v.F)
|
||||||
|
}
|
||||||
|
|
||||||
|
case parser.BOTTOMK:
|
||||||
|
// The heap keeps the highest value on top, so reverse it.
|
||||||
|
if len(aggr.heap) > 1 {
|
||||||
|
sort.Sort(sort.Reverse((*vectorByReverseValueHeap)(&aggr.heap)))
|
||||||
|
}
|
||||||
|
for _, v := range aggr.heap {
|
||||||
|
add(v.Metric, v.F)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return mat, annos
|
||||||
|
}
|
||||||
|
|
||||||
|
// aggregationK evaluates count_values on vec.
|
||||||
|
// Outputs as many series per group as there are values in the input.
|
||||||
|
func (ev *evaluator) aggregationCountValues(e *parser.AggregateExpr, grouping []string, valueLabel string, vec Vector, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||||
|
type groupCount struct {
|
||||||
|
labels labels.Labels
|
||||||
|
count int
|
||||||
|
}
|
||||||
|
result := map[uint64]*groupCount{}
|
||||||
|
|
||||||
|
var buf []byte
|
||||||
|
for _, s := range vec {
|
||||||
|
enh.resetBuilder(s.Metric)
|
||||||
|
enh.lb.Set(valueLabel, strconv.FormatFloat(s.F, 'f', -1, 64))
|
||||||
|
metric := enh.lb.Labels()
|
||||||
|
|
||||||
|
// Considering the count_values()
|
||||||
|
// operator is less frequently used than other aggregations, we're fine having to
|
||||||
|
// re-compute the grouping key on each step for this case.
|
||||||
|
var groupingKey uint64
|
||||||
|
groupingKey, buf = generateGroupingKey(metric, grouping, e.Without, buf)
|
||||||
|
|
||||||
|
group, ok := result[groupingKey]
|
||||||
|
// Add a new group if it doesn't exist.
|
||||||
|
if !ok {
|
||||||
|
result[groupingKey] = &groupCount{
|
||||||
|
labels: generateGroupingLabels(enh, metric, e.Without, grouping),
|
||||||
|
count: 1,
|
||||||
|
}
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
group.count++
|
||||||
|
}
|
||||||
|
|
||||||
|
// Construct the result Vector from the aggregated groups.
|
||||||
|
for _, aggr := range result {
|
||||||
enh.Out = append(enh.Out, Sample{
|
enh.Out = append(enh.Out, Sample{
|
||||||
Metric: aggr.labels,
|
Metric: aggr.labels,
|
||||||
F: aggr.floatValue,
|
F: float64(aggr.count),
|
||||||
H: aggr.histogramValue,
|
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
return enh.Out, annos
|
return enh.Out, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func addToSeries(ss *Series, ts int64, f float64, h *histogram.FloatHistogram, numSteps int) {
|
||||||
|
if h == nil {
|
||||||
|
if ss.Floats == nil {
|
||||||
|
ss.Floats = getFPointSlice(numSteps)
|
||||||
|
}
|
||||||
|
ss.Floats = append(ss.Floats, FPoint{T: ts, F: f})
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if ss.Histograms == nil {
|
||||||
|
ss.Histograms = getHPointSlice(numSteps)
|
||||||
|
}
|
||||||
|
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: h})
|
||||||
|
}
|
||||||
|
|
||||||
|
func (ev *evaluator) nextValues(ts int64, series *Series) (f float64, h *histogram.FloatHistogram, b bool) {
|
||||||
|
switch {
|
||||||
|
case len(series.Floats) > 0 && series.Floats[0].T == ts:
|
||||||
|
f = series.Floats[0].F
|
||||||
|
series.Floats = series.Floats[1:] // Move input vectors forward
|
||||||
|
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
|
||||||
|
h = series.Histograms[0].H
|
||||||
|
series.Histograms = series.Histograms[1:]
|
||||||
|
default:
|
||||||
|
return f, h, false
|
||||||
|
}
|
||||||
|
return f, h, true
|
||||||
}
|
}
|
||||||
|
|
||||||
// groupingKey builds and returns the grouping key for the given metric and
|
// groupingKey builds and returns the grouping key for the given metric and
|
||||||
|
@ -2969,6 +3118,21 @@ func generateGroupingKey(metric labels.Labels, grouping []string, without bool,
|
||||||
return metric.HashForLabels(buf, grouping...)
|
return metric.HashForLabels(buf, grouping...)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func generateGroupingLabels(enh *EvalNodeHelper, metric labels.Labels, without bool, grouping []string) labels.Labels {
|
||||||
|
enh.resetBuilder(metric)
|
||||||
|
switch {
|
||||||
|
case without:
|
||||||
|
enh.lb.Del(grouping...)
|
||||||
|
enh.lb.Del(labels.MetricName)
|
||||||
|
return enh.lb.Labels()
|
||||||
|
case len(grouping) > 0:
|
||||||
|
enh.lb.Keep(grouping...)
|
||||||
|
return enh.lb.Labels()
|
||||||
|
default:
|
||||||
|
return labels.EmptyLabels()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// btos returns 1 if b is true, 0 otherwise.
|
// btos returns 1 if b is true, 0 otherwise.
|
||||||
func btos(b bool) float64 {
|
func btos(b bool) float64 {
|
||||||
if b {
|
if b {
|
||||||
|
|
|
@ -966,7 +966,7 @@ load 10s
|
||||||
{
|
{
|
||||||
Query: "sum by (b) (max_over_time(metricWith3SampleEvery10Seconds[60s] @ 30))",
|
Query: "sum by (b) (max_over_time(metricWith3SampleEvery10Seconds[60s] @ 30))",
|
||||||
Start: time.Unix(201, 0),
|
Start: time.Unix(201, 0),
|
||||||
PeakSamples: 8,
|
PeakSamples: 7,
|
||||||
TotalSamples: 12, // @ modifier force the evaluation to at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 3 series
|
TotalSamples: 12, // @ modifier force the evaluation to at 30 seconds - So it brings 4 datapoints (0, 10, 20, 30 seconds) * 3 series
|
||||||
TotalSamplesPerStep: stats.TotalSamplesPerStep{
|
TotalSamplesPerStep: stats.TotalSamplesPerStep{
|
||||||
201000: 12,
|
201000: 12,
|
||||||
|
|
Loading…
Reference in a new issue