histogram: Expose #12305

Native histograms without a zero threshold aren't federated properly.

This adds a test to prove the specific failure mode, which is that
histograms with a zero threshold of zero are federated as classic
histograms.

The underlying reason is that the protobuf parser identifies a native
histogram by detecting a zero bucket or by detecting integer buckets.
Therefore, a float histogram with a zero threshold of zero and an
unpopulated zero bucket falls through the cracks (no integer buckets,
no zero bucket).

This commit also addse a test case for the latter.

Signed-off-by: beorn7 <beorn@grafana.com>
This commit is contained in:
beorn7 2023-07-18 18:40:51 +02:00
parent 0a48f93111
commit 2ea8df4734
2 changed files with 101 additions and 12 deletions

View file

@ -463,6 +463,24 @@ metric: <
>
>
`,
`name: "test_float_histogram_with_zerothreshold_zero"
help: "Test float histogram with a zero threshold of zero."
type: HISTOGRAM
metric: <
histogram: <
sample_count_float: 5.0
sample_sum: 12.1
schema: 3
positive_span: <
offset: 8
length: 2
>
positive_count: 2.0
positive_count: 3.0
>
>
`,
`name: "rpc_durations_seconds"
help: "RPC latency distributions."
@ -850,6 +868,30 @@ func TestProtobufParse(t *testing.T) {
"foo", "baz",
),
},
{
m: "test_float_histogram_with_zerothreshold_zero",
help: "Test float histogram with a zero threshold of zero.",
},
{
m: "test_float_histogram_with_zerothreshold_zero",
typ: MetricTypeHistogram,
},
{
m: "test_float_histogram_with_zerothreshold_zero",
fhs: &histogram.FloatHistogram{
Count: 5.0,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
PositiveBuckets: []float64{2.0, 3.0},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram_with_zerothreshold_zero",
),
},
{
m: "rpc_durations_seconds",
help: "RPC latency distributions.",
@ -1550,14 +1592,38 @@ func TestProtobufParse(t *testing.T) {
),
},
{ // 67
m: "test_float_histogram_with_zerothreshold_zero",
help: "Test float histogram with a zero threshold of zero.",
},
{ // 68
m: "test_float_histogram_with_zerothreshold_zero",
typ: MetricTypeHistogram,
},
{ // 69
m: "test_float_histogram_with_zerothreshold_zero",
fhs: &histogram.FloatHistogram{
Count: 5.0,
Sum: 12.1,
Schema: 3,
PositiveSpans: []histogram.Span{
{Offset: 8, Length: 2},
},
PositiveBuckets: []float64{2.0, 3.0},
NegativeSpans: []histogram.Span{},
},
lset: labels.FromStrings(
"__name__", "test_float_histogram_with_zerothreshold_zero",
),
},
{ // 70
m: "rpc_durations_seconds",
help: "RPC latency distributions.",
},
{ // 68
{ // 71
m: "rpc_durations_seconds",
typ: MetricTypeSummary,
},
{ // 69
{ // 72
m: "rpc_durations_seconds_count\xffservice\xffexponential",
v: 262,
lset: labels.FromStrings(
@ -1565,7 +1631,7 @@ func TestProtobufParse(t *testing.T) {
"service", "exponential",
),
},
{ // 70
{ // 73
m: "rpc_durations_seconds_sum\xffservice\xffexponential",
v: 0.00025551262820703587,
lset: labels.FromStrings(
@ -1573,7 +1639,7 @@ func TestProtobufParse(t *testing.T) {
"service", "exponential",
),
},
{ // 71
{ // 74
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.5",
v: 6.442786329648548e-07,
lset: labels.FromStrings(
@ -1582,7 +1648,7 @@ func TestProtobufParse(t *testing.T) {
"service", "exponential",
),
},
{ // 72
{ // 75
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.9",
v: 1.9435742936658396e-06,
lset: labels.FromStrings(
@ -1591,7 +1657,7 @@ func TestProtobufParse(t *testing.T) {
"service", "exponential",
),
},
{ // 73
{ // 76
m: "rpc_durations_seconds\xffservice\xffexponential\xffquantile\xff0.99",
v: 4.0471608667037015e-06,
lset: labels.FromStrings(
@ -1600,22 +1666,22 @@ func TestProtobufParse(t *testing.T) {
"service", "exponential",
),
},
{ // 74
{ // 77
m: "without_quantiles",
help: "A summary without quantiles.",
},
{ // 75
{ // 78
m: "without_quantiles",
typ: MetricTypeSummary,
},
{ // 76
{ // 79
m: "without_quantiles_count",
v: 42,
lset: labels.FromStrings(
"__name__", "without_quantiles_count",
),
},
{ // 77
{ // 80
m: "without_quantiles_sum",
v: 1.234,
lset: labels.FromStrings(

View file

@ -335,18 +335,41 @@ func TestFederationWithNativeHistograms(t *testing.T) {
},
NegativeBuckets: []int64{1, 1, -1, 0},
}
histWithoutZeroBucket := &histogram.Histogram{
Count: 20,
Sum: 99.23,
Schema: 1,
PositiveSpans: []histogram.Span{
{Offset: 0, Length: 2},
{Offset: 1, Length: 2},
},
PositiveBuckets: []int64{2, 2, -2, 0},
NegativeSpans: []histogram.Span{
{Offset: 0, Length: 2},
{Offset: 1, Length: 2},
},
NegativeBuckets: []int64{2, 2, -2, 0},
}
app := db.Appender(context.Background())
for i := 0; i < 6; i++ {
l := labels.FromStrings("__name__", "test_metric", "foo", fmt.Sprintf("%d", i))
expL := labels.FromStrings("__name__", "test_metric", "instance", "", "foo", fmt.Sprintf("%d", i))
if i%3 == 0 {
switch i {
case 0, 3:
_, err = app.Append(0, l, 100*60*1000, float64(i*100))
expVec = append(expVec, promql.Sample{
T: 100 * 60 * 1000,
F: float64(i * 100),
Metric: expL,
})
} else {
case 4:
_, err = app.AppendHistogram(0, l, 100*60*1000, histWithoutZeroBucket.Copy(), nil)
expVec = append(expVec, promql.Sample{
T: 100 * 60 * 1000,
H: histWithoutZeroBucket.ToFloat(),
Metric: expL,
})
default:
hist.ZeroCount++
_, err = app.AppendHistogram(0, l, 100*60*1000, hist.Copy(), nil)
expVec = append(expVec, promql.Sample{