mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-09 23:24:05 -08:00
promql: refactor: split out aggregations over range
The new function `rangeEvalAgg` is mostly a copy of `rangeEval`, but without `initSeries` which we don't need and inlining the callback to `aggregation()`. Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit is contained in:
parent
e5f667537c
commit
5f10d17cef
180
promql/engine.go
180
promql/engine.go
|
@ -1291,6 +1291,172 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
return mat, warnings
|
||||
}
|
||||
|
||||
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string) (Matrix, annotations.Annotations) {
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
matrixes := make([]Matrix, 2)
|
||||
origMatrixes := make([]Matrix, 2)
|
||||
originalNumSamples := ev.currentSamples
|
||||
|
||||
var warnings annotations.Annotations
|
||||
for i, e := range []parser.Expr{aggExpr.Param, aggExpr.Expr} {
|
||||
// Functions will take string arguments from the expressions, not the values.
|
||||
if e != nil && e.Type() != parser.ValueTypeString {
|
||||
// ev.currentSamples will be updated to the correct value within the ev.eval call.
|
||||
val, ws := ev.eval(e)
|
||||
warnings.Merge(ws)
|
||||
matrixes[i] = val.(Matrix)
|
||||
|
||||
// Keep a copy of the original point slices so that they
|
||||
// can be returned to the pool.
|
||||
origMatrixes[i] = make(Matrix, len(matrixes[i]))
|
||||
copy(origMatrixes[i], matrixes[i])
|
||||
}
|
||||
}
|
||||
|
||||
vectors := make([]Vector, 2) // Input vectors for the function.
|
||||
args := make([]parser.Value, 2) // Argument to function.
|
||||
biggestLen := len(matrixes[1])
|
||||
enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)}
|
||||
type seriesAndTimestamp struct {
|
||||
Series
|
||||
ts int64
|
||||
}
|
||||
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
|
||||
tempNumSamples := ev.currentSamples
|
||||
|
||||
seriesHelpers := make([][]EvalSeriesHelper, 2)
|
||||
bufHelpers := make([][]EvalSeriesHelper, 2)
|
||||
// Prepare a function to initialise series helpers with the grouping key.
|
||||
buf := make([]byte, 0, 1024)
|
||||
|
||||
seriesHelpers[1] = make([]EvalSeriesHelper, len(matrixes[1]))
|
||||
bufHelpers[1] = make([]EvalSeriesHelper, len(matrixes[1]))
|
||||
|
||||
for si, series := range matrixes[1] {
|
||||
seriesHelpers[1][si].groupingKey, buf = generateGroupingKey(series.Metric, sortedGrouping, aggExpr.Without, buf)
|
||||
}
|
||||
|
||||
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
||||
ev.error(err)
|
||||
}
|
||||
// Reset number of samples in memory after each timestamp.
|
||||
ev.currentSamples = tempNumSamples
|
||||
// Gather input vectors for this timestamp.
|
||||
for i := range []parser.Expr{aggExpr.Param, aggExpr.Expr} {
|
||||
vectors[i] = vectors[i][:0]
|
||||
bufHelpers[i] = bufHelpers[i][:0]
|
||||
|
||||
for si, series := range matrixes[i] {
|
||||
switch {
|
||||
case len(series.Floats) > 0 && series.Floats[0].T == ts:
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, F: series.Floats[0].F, T: ts})
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
matrixes[i][si].Floats = series.Floats[1:]
|
||||
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, H: series.Histograms[0].H, T: ts})
|
||||
matrixes[i][si].Histograms = series.Histograms[1:]
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if seriesHelpers[i] != nil {
|
||||
bufHelpers[i] = append(bufHelpers[i], seriesHelpers[i][si])
|
||||
}
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
}
|
||||
args[i] = vectors[i]
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
}
|
||||
|
||||
// Make the function call.
|
||||
enh.Ts = ts
|
||||
var param float64
|
||||
if aggExpr.Param != nil {
|
||||
param = args[0].(Vector)[0].F
|
||||
}
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, args[1].(Vector), bufHelpers[1], enh)
|
||||
|
||||
enh.Out = result[:0] // Reuse result vector.
|
||||
warnings.Merge(ws)
|
||||
|
||||
vecNumSamples := result.TotalSamples()
|
||||
ev.currentSamples += vecNumSamples
|
||||
// When we reset currentSamples to tempNumSamples during the next iteration of the loop it also
|
||||
// needs to include the samples from the result here, as they're still in memory.
|
||||
tempNumSamples += vecNumSamples
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
||||
// If this could be an instant query, shortcut so as not to change sort order.
|
||||
if ev.endTimestamp == ev.startTimestamp {
|
||||
if result.ContainsSameLabelset() {
|
||||
ev.errorf("vector cannot contain metrics with the same labelset")
|
||||
}
|
||||
mat := make(Matrix, len(result))
|
||||
for i, s := range result {
|
||||
if s.H == nil {
|
||||
mat[i] = Series{Metric: s.Metric, Floats: []FPoint{{T: ts, F: s.F}}}
|
||||
} else {
|
||||
mat[i] = Series{Metric: s.Metric, Histograms: []HPoint{{T: ts, H: s.H}}}
|
||||
}
|
||||
}
|
||||
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return mat, warnings
|
||||
}
|
||||
|
||||
// Add samples in output vector to output series.
|
||||
for _, sample := range result {
|
||||
h := sample.Metric.Hash()
|
||||
ss, ok := seriess[h]
|
||||
if ok {
|
||||
if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate.
|
||||
ev.errorf("vector cannot contain metrics with the same labelset")
|
||||
}
|
||||
ss.ts = ts
|
||||
} else {
|
||||
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
||||
}
|
||||
if sample.H == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
||||
}
|
||||
seriess[h] = ss
|
||||
}
|
||||
}
|
||||
|
||||
// Reuse the original point slices.
|
||||
for _, m := range origMatrixes {
|
||||
for _, s := range m {
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
}
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
mat := make(Matrix, 0, len(seriess))
|
||||
for _, ss := range seriess {
|
||||
mat = append(mat, ss.Series)
|
||||
}
|
||||
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return mat, warnings
|
||||
}
|
||||
|
||||
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
|
||||
// evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set.
|
||||
func (ev *evaluator) evalSubquery(subq *parser.SubqueryExpr) (*parser.MatrixSelector, int, annotations.Annotations) {
|
||||
|
@ -1343,12 +1509,6 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, annotations.Annotatio
|
|||
sortedGrouping := e.Grouping
|
||||
slices.Sort(sortedGrouping)
|
||||
|
||||
// Prepare a function to initialise series helpers with the grouping key.
|
||||
buf := make([]byte, 0, 1024)
|
||||
initSeries := func(series labels.Labels, h *EvalSeriesHelper) {
|
||||
h.groupingKey, buf = generateGroupingKey(series, sortedGrouping, e.Without, buf)
|
||||
}
|
||||
|
||||
unwrapParenExpr(&e.Param)
|
||||
param := unwrapStepInvariantExpr(e.Param)
|
||||
unwrapParenExpr(¶m)
|
||||
|
@ -1367,13 +1527,7 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, annotations.Annotatio
|
|||
}, e.Expr)
|
||||
}
|
||||
|
||||
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, annotations.Annotations) {
|
||||
var param float64
|
||||
if e.Param != nil {
|
||||
param = v[0].(Vector)[0].F
|
||||
}
|
||||
return ev.aggregation(e, sortedGrouping, param, v[1].(Vector), sh[1], enh)
|
||||
}, e.Param, e.Expr)
|
||||
return ev.rangeEvalAgg(e, sortedGrouping)
|
||||
|
||||
case *parser.Call:
|
||||
call := FunctionCalls[e.Func.Name]
|
||||
|
|
Loading…
Reference in a new issue