mirror of
https://github.com/prometheus/prometheus.git
synced 2024-12-24 13:14:05 -08:00
promql(native histograms): Introduce exponential interpolation
Some checks failed
CI / Go tests (push) Has been cancelled
CI / More Go tests (push) Has been cancelled
CI / Go tests with previous Go version (push) Has been cancelled
CI / UI tests (push) Has been cancelled
CI / Go tests on Windows (push) Has been cancelled
CI / Mixins tests (push) Has been cancelled
CI / Build Prometheus for common architectures (0) (push) Has been cancelled
CI / Build Prometheus for common architectures (1) (push) Has been cancelled
CI / Build Prometheus for common architectures (2) (push) Has been cancelled
CI / Build Prometheus for all architectures (0) (push) Has been cancelled
CI / Build Prometheus for all architectures (1) (push) Has been cancelled
CI / Build Prometheus for all architectures (10) (push) Has been cancelled
CI / Build Prometheus for all architectures (11) (push) Has been cancelled
CI / Build Prometheus for all architectures (2) (push) Has been cancelled
CI / Build Prometheus for all architectures (3) (push) Has been cancelled
CI / Build Prometheus for all architectures (4) (push) Has been cancelled
CI / Build Prometheus for all architectures (5) (push) Has been cancelled
CI / Build Prometheus for all architectures (6) (push) Has been cancelled
CI / Build Prometheus for all architectures (7) (push) Has been cancelled
CI / Build Prometheus for all architectures (8) (push) Has been cancelled
CI / Build Prometheus for all architectures (9) (push) Has been cancelled
CI / Check generated parser (push) Has been cancelled
CI / golangci-lint (push) Has been cancelled
CI / fuzzing (push) Has been cancelled
CI / codeql (push) Has been cancelled
CI / Report status of build Prometheus for all architectures (push) Has been cancelled
CI / Publish main branch artifacts (push) Has been cancelled
CI / Publish release artefacts (push) Has been cancelled
CI / Publish UI on npm Registry (push) Has been cancelled
Some checks failed
CI / Go tests (push) Has been cancelled
CI / More Go tests (push) Has been cancelled
CI / Go tests with previous Go version (push) Has been cancelled
CI / UI tests (push) Has been cancelled
CI / Go tests on Windows (push) Has been cancelled
CI / Mixins tests (push) Has been cancelled
CI / Build Prometheus for common architectures (0) (push) Has been cancelled
CI / Build Prometheus for common architectures (1) (push) Has been cancelled
CI / Build Prometheus for common architectures (2) (push) Has been cancelled
CI / Build Prometheus for all architectures (0) (push) Has been cancelled
CI / Build Prometheus for all architectures (1) (push) Has been cancelled
CI / Build Prometheus for all architectures (10) (push) Has been cancelled
CI / Build Prometheus for all architectures (11) (push) Has been cancelled
CI / Build Prometheus for all architectures (2) (push) Has been cancelled
CI / Build Prometheus for all architectures (3) (push) Has been cancelled
CI / Build Prometheus for all architectures (4) (push) Has been cancelled
CI / Build Prometheus for all architectures (5) (push) Has been cancelled
CI / Build Prometheus for all architectures (6) (push) Has been cancelled
CI / Build Prometheus for all architectures (7) (push) Has been cancelled
CI / Build Prometheus for all architectures (8) (push) Has been cancelled
CI / Build Prometheus for all architectures (9) (push) Has been cancelled
CI / Check generated parser (push) Has been cancelled
CI / golangci-lint (push) Has been cancelled
CI / fuzzing (push) Has been cancelled
CI / codeql (push) Has been cancelled
CI / Report status of build Prometheus for all architectures (push) Has been cancelled
CI / Publish main branch artifacts (push) Has been cancelled
CI / Publish release artefacts (push) Has been cancelled
CI / Publish UI on npm Registry (push) Has been cancelled
The linear interpolation (assuming that observations are uniformly distributed within a bucket) is a solid and simple assumption in lack of any other information. However, the exponential bucketing used by standard schemas of native histograms has been chosen to cover the whole range of observations in a way that bucket populations are spread out over buckets in a reasonably way for typical distributions encountered in real-world scenarios. This is the origin of the idea implemented here: If we divide a given bucket into two (or more) smaller exponential buckets, we "most naturally" expect that the samples in the original buckets will split among those smaller buckets in a more or less uniform fashion. With this assumption, we end up with an "exponential interpolation", which therefore appears to be a better match for histograms with exponential bucketing. This commit leaves the linear interpolation in place for NHCB, but changes the interpolation for exponential native histograms to exponential. This affects `histogram_quantile` and `histogram_fraction` (because the latter is more or less the inverse of the former). The zero bucket has to be treated specially because the assumption above would lead to an "interpolation to zero" (the bucket density approaches infinity around zero, and with the postulated uniform usage of buckets, we would end up with an estimate of zero for all quantiles ending up in the zero bucket). We simply fall back to linear interpolation within the zero bucket. At the same time, this commit makes the call to stick with the assumption that the zero bucket only contains positive observations for native histograms without negative buckets (and vice versa). (This is an assumption relevant for interpolation. It is a mostly academic point, as the zero bucket is supposed to be very small anyway. However, in cases where it _is_ relevantly broad, the assumption helps a lot in practice.) This commit also updates and completes the documentation to match both details about interpolation. As a more high level note: The approach here attempts to strike a balance between a more simplistic approach without any assumption, and a more involved approach with more sophisticated assumptions. I will shortly describe both for reference: The "zero assumption" approach would be to not interpolate at all, but _always_ return the harmonic mean of the bucket boundaries of the bucket the quantile ends up in. This has the advantage of minimizing the maximum possible relative error of the quantile estimation. (Depending on the exact definition of the relative error of an estimation, there is also an argument to return the arithmetic mean of the bucket boundaries.) While limiting the maximum possible relative error is a good property, this approach would throw away the information if a quantile is closer to the upper or lower end of the population within a bucket. This can be valuable trending information in a dashboard. With any kind of interpolation, the maximum possible error of a quantile estimation increases to the full width of a bucket (i.e. it more than doubles for the harmonic mean approach, and precisely doubles for the arithmetic mean approach). However, in return the _expectation value_ of the error decreases. The increase of the theoretical maximum only has practical relevance for pathologic distributions. For example, if there are thousand observations within a bucket, they could _all_ be at the upper bound of the bucket. If the quantile calculation picks the 1st observation in the bucket as the relevant one, an interpolation will yield a value close to the lower bucket boundary, while the true quantile value is close to the upper boundary. The "fancy interpolation" approach would be one that analyses the _actual_ distribution of samples in the histogram. A lot of statistics could be applied based on the information we have available in the histogram. This would include the population of neighboring (or even all) buckets in the histogram. In general, the resolution of a native histogram should be quite high, and therefore, those "fancy" approaches would increase the computational cost quite a bit with very little practical benefits (i.e. just tiny corrections of the estimated quantile value). The results are also much harder to reason with. Signed-off-by: beorn7 <beorn@grafana.com>
This commit is contained in:
parent
c36589a6dd
commit
6fcd225aee
|
@ -326,45 +326,70 @@ With native histograms, aggregating everything works as usual without any `by` c
|
|||
|
||||
histogram_quantile(0.9, sum(rate(http_request_duration_seconds[10m])))
|
||||
|
||||
The `histogram_quantile()` function interpolates quantile values by
|
||||
assuming a linear distribution within a bucket.
|
||||
In the (common) case that a quantile value does not coincide with a bucket
|
||||
boundary, the `histogram_quantile()` function interpolates the quantile value
|
||||
within the bucket the quantile value falls into. For classic histograms, for
|
||||
native histograms with custom bucket boundaries, and for the zero bucket of
|
||||
other native histograms, it assumes a uniform distribution of observations
|
||||
within the bucket (also called _linear interpolation_). For the
|
||||
non-zero-buckets of native histograms with a standard exponential bucketing
|
||||
schema, the interpolation is done under the assumption that the samples within
|
||||
the bucket are distributed in a way that they would uniformly populate the
|
||||
buckets in a hypothetical histogram with higher resolution. (This is also
|
||||
called _exponential interpolation_.)
|
||||
|
||||
If `b` has 0 observations, `NaN` is returned. For φ < 0, `-Inf` is
|
||||
returned. For φ > 1, `+Inf` is returned. For φ = `NaN`, `NaN` is returned.
|
||||
|
||||
The following is only relevant for classic histograms: If `b` contains
|
||||
fewer than two buckets, `NaN` is returned. The highest bucket must have an
|
||||
upper bound of `+Inf`. (Otherwise, `NaN` is returned.) If a quantile is located
|
||||
in the highest bucket, the upper bound of the second highest bucket is
|
||||
returned. A lower limit of the lowest bucket is assumed to be 0 if the upper
|
||||
bound of that bucket is greater than
|
||||
0. In that case, the usual linear interpolation is applied within that
|
||||
bucket. Otherwise, the upper bound of the lowest bucket is returned for
|
||||
quantiles located in the lowest bucket.
|
||||
Special cases for classic histograms:
|
||||
|
||||
You can use `histogram_quantile(0, v instant-vector)` to get the estimated minimum value stored in
|
||||
a histogram.
|
||||
* If `b` contains fewer than two buckets, `NaN` is returned.
|
||||
* The highest bucket must have an upper bound of `+Inf`. (Otherwise, `NaN` is
|
||||
returned.)
|
||||
* If a quantile is located in the highest bucket, the upper bound of the second
|
||||
highest bucket is returned.
|
||||
* The lower limit of the lowest bucket is assumed to be 0 if the upper bound of
|
||||
that bucket is greater than 0. In that case, the usual linear interpolation
|
||||
is applied within that bucket. Otherwise, the upper bound of the lowest
|
||||
bucket is returned for quantiles located in the lowest bucket.
|
||||
|
||||
You can use `histogram_quantile(1, v instant-vector)` to get the estimated maximum value stored in
|
||||
a histogram.
|
||||
Special cases for native histograms (relevant for the exact interpolation
|
||||
happening within the zero bucket):
|
||||
|
||||
Buckets of classic histograms are cumulative. Therefore, the following should always be the case:
|
||||
* A zero bucket with finite width is assumed to contain no negative
|
||||
observations if the histogram has observations in positive buckets, but none
|
||||
in negative buckets.
|
||||
* A zero bucket with finite width is assumed to contain no positive
|
||||
observations if the histogram has observations in negative buckets, but none
|
||||
in positive buckets.
|
||||
|
||||
* The counts in the buckets are monotonically increasing (strictly non-decreasing).
|
||||
* A lack of observations between the upper limits of two consecutive buckets results in equal counts
|
||||
in those two buckets.
|
||||
You can use `histogram_quantile(0, v instant-vector)` to get the estimated
|
||||
minimum value stored in a histogram.
|
||||
|
||||
However, floating point precision issues (e.g. small discrepancies introduced by computing of buckets
|
||||
with `sum(rate(...))`) or invalid data might violate these assumptions. In that case,
|
||||
`histogram_quantile` would be unable to return meaningful results. To mitigate the issue,
|
||||
`histogram_quantile` assumes that tiny relative differences between consecutive buckets are happening
|
||||
because of floating point precision errors and ignores them. (The threshold to ignore a difference
|
||||
between two buckets is a trillionth (1e-12) of the sum of both buckets.) Furthermore, if there are
|
||||
non-monotonic bucket counts even after this adjustment, they are increased to the value of the
|
||||
previous buckets to enforce monotonicity. The latter is evidence for an actual issue with the input
|
||||
data and is therefore flagged with an informational annotation reading `input to histogram_quantile
|
||||
needed to be fixed for monotonicity`. If you encounter this annotation, you should find and remove
|
||||
the source of the invalid data.
|
||||
You can use `histogram_quantile(1, v instant-vector)` to get the estimated
|
||||
maximum value stored in a histogram.
|
||||
|
||||
Buckets of classic histograms are cumulative. Therefore, the following should
|
||||
always be the case:
|
||||
|
||||
* The counts in the buckets are monotonically increasing (strictly
|
||||
non-decreasing).
|
||||
* A lack of observations between the upper limits of two consecutive buckets
|
||||
results in equal counts in those two buckets.
|
||||
|
||||
However, floating point precision issues (e.g. small discrepancies introduced
|
||||
by computing of buckets with `sum(rate(...))`) or invalid data might violate
|
||||
these assumptions. In that case, `histogram_quantile` would be unable to return
|
||||
meaningful results. To mitigate the issue, `histogram_quantile` assumes that
|
||||
tiny relative differences between consecutive buckets are happening because of
|
||||
floating point precision errors and ignores them. (The threshold to ignore a
|
||||
difference between two buckets is a trillionth (1e-12) of the sum of both
|
||||
buckets.) Furthermore, if there are non-monotonic bucket counts even after this
|
||||
adjustment, they are increased to the value of the previous buckets to enforce
|
||||
monotonicity. The latter is evidence for an actual issue with the input data
|
||||
and is therefore flagged with an informational annotation reading `input to
|
||||
histogram_quantile needed to be fixed for monotonicity`. If you encounter this
|
||||
annotation, you should find and remove the source of the invalid data.
|
||||
|
||||
## `histogram_stddev()` and `histogram_stdvar()`
|
||||
|
||||
|
|
232
promql/promqltest/testdata/native_histograms.test
vendored
232
promql/promqltest/testdata/native_histograms.test
vendored
|
@ -46,9 +46,12 @@ eval instant at 1m histogram_fraction(1, 2, single_histogram)
|
|||
eval instant at 1m histogram_fraction(0, 8, single_histogram)
|
||||
{} 1
|
||||
|
||||
# Median is 1.5 due to linear estimation of the midpoint of the middle bucket, whose values are within range 1 < x <= 2.
|
||||
# Median is 1.414213562373095 (2**2**-1, or sqrt(2)) due to
|
||||
# exponential interpolation, i.e. the "midpoint" within range 1 < x <=
|
||||
# 2 is assumed where the bucket boundary would be if we increased the
|
||||
# resolution of the histogram by one step.
|
||||
eval instant at 1m histogram_quantile(0.5, single_histogram)
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
clear
|
||||
|
||||
|
@ -68,8 +71,9 @@ eval instant at 5m histogram_avg(multi_histogram)
|
|||
eval instant at 5m histogram_fraction(1, 2, multi_histogram)
|
||||
{} 0.5
|
||||
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 5m histogram_quantile(0.5, multi_histogram)
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
|
||||
# Each entry should look the same as the first.
|
||||
|
@ -85,8 +89,9 @@ eval instant at 50m histogram_avg(multi_histogram)
|
|||
eval instant at 50m histogram_fraction(1, 2, multi_histogram)
|
||||
{} 0.5
|
||||
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 50m histogram_quantile(0.5, multi_histogram)
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
clear
|
||||
|
||||
|
@ -109,8 +114,9 @@ eval instant at 5m histogram_avg(incr_histogram)
|
|||
eval instant at 5m histogram_fraction(1, 2, incr_histogram)
|
||||
{} 0.6
|
||||
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 5m histogram_quantile(0.5, incr_histogram)
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
|
||||
eval instant at 50m incr_histogram
|
||||
|
@ -129,16 +135,18 @@ eval instant at 50m histogram_avg(incr_histogram)
|
|||
eval instant at 50m histogram_fraction(1, 2, incr_histogram)
|
||||
{} 0.8571428571428571
|
||||
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 50m histogram_quantile(0.5, incr_histogram)
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
# Per-second average rate of increase should be 1/(5*60) for count and buckets, then 2/(5*60) for sum.
|
||||
eval instant at 50m rate(incr_histogram[10m])
|
||||
{} {{count:0.0033333333333333335 sum:0.006666666666666667 offset:1 buckets:[0.0033333333333333335]}}
|
||||
|
||||
# Calculate the 50th percentile of observations over the last 10m.
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 50m histogram_quantile(0.5, rate(incr_histogram[10m]))
|
||||
{} 1.5
|
||||
{} 1.414213562373095
|
||||
|
||||
clear
|
||||
|
||||
|
@ -211,8 +219,9 @@ eval instant at 1m histogram_avg(negative_histogram)
|
|||
eval instant at 1m histogram_fraction(-2, -1, negative_histogram)
|
||||
{} 0.5
|
||||
|
||||
# Exponential interpolation works the same as for positive buckets, just mirrored.
|
||||
eval instant at 1m histogram_quantile(0.5, negative_histogram)
|
||||
{} -1.5
|
||||
{} -1.414213562373095
|
||||
|
||||
clear
|
||||
|
||||
|
@ -233,8 +242,9 @@ eval instant at 5m histogram_avg(two_samples_histogram)
|
|||
eval instant at 5m histogram_fraction(-2, -1, two_samples_histogram)
|
||||
{} 0.5
|
||||
|
||||
# See explanation for exponential interpolation above.
|
||||
eval instant at 5m histogram_quantile(0.5, two_samples_histogram)
|
||||
{} -1.5
|
||||
{} -1.414213562373095
|
||||
|
||||
clear
|
||||
|
||||
|
@ -392,20 +402,24 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_1)
|
|||
eval instant at 10m histogram_quantile(1, histogram_quantile_1)
|
||||
{} 16
|
||||
|
||||
# The following quantiles are within a bucket. Exponential
|
||||
# interpolation is applied (rather than linear, as it is done for
|
||||
# classic histograms), leading to slightly different quantile values.
|
||||
eval instant at 10m histogram_quantile(0.99, histogram_quantile_1)
|
||||
{} 15.759999999999998
|
||||
{} 15.67072476139083
|
||||
|
||||
eval instant at 10m histogram_quantile(0.9, histogram_quantile_1)
|
||||
{} 13.600000000000001
|
||||
{} 12.99603834169977
|
||||
|
||||
eval instant at 10m histogram_quantile(0.6, histogram_quantile_1)
|
||||
{} 4.799999999999997
|
||||
{} 4.594793419988138
|
||||
|
||||
eval instant at 10m histogram_quantile(0.5, histogram_quantile_1)
|
||||
{} 1.6666666666666665
|
||||
{} 1.5874010519681994
|
||||
|
||||
# Linear interpolation within the zero bucket after all.
|
||||
eval instant at 10m histogram_quantile(0.1, histogram_quantile_1)
|
||||
{} 0.0006000000000000001
|
||||
{} 0.0006
|
||||
|
||||
eval instant at 10m histogram_quantile(0, histogram_quantile_1)
|
||||
{} 0
|
||||
|
@ -425,17 +439,20 @@ eval_warn instant at 10m histogram_quantile(1.001, histogram_quantile_2)
|
|||
eval instant at 10m histogram_quantile(1, histogram_quantile_2)
|
||||
{} 0
|
||||
|
||||
# Again, the quantile values here are slightly different from what
|
||||
# they would be with linear interpolation. Note that quantiles
|
||||
# ending up in the zero bucket are linearly interpolated after all.
|
||||
eval instant at 10m histogram_quantile(0.99, histogram_quantile_2)
|
||||
{} -6.000000000000048e-05
|
||||
{} -0.00006
|
||||
|
||||
eval instant at 10m histogram_quantile(0.9, histogram_quantile_2)
|
||||
{} -0.0005999999999999996
|
||||
{} -0.0006
|
||||
|
||||
eval instant at 10m histogram_quantile(0.5, histogram_quantile_2)
|
||||
{} -1.6666666666666667
|
||||
{} -1.5874010519681996
|
||||
|
||||
eval instant at 10m histogram_quantile(0.1, histogram_quantile_2)
|
||||
{} -13.6
|
||||
{} -12.996038341699768
|
||||
|
||||
eval instant at 10m histogram_quantile(0, histogram_quantile_2)
|
||||
{} -16
|
||||
|
@ -445,7 +462,9 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_2)
|
|||
|
||||
clear
|
||||
|
||||
# Apply quantile function to histogram with both positive and negative buckets with zero bucket.
|
||||
# Apply quantile function to histogram with both positive and negative
|
||||
# buckets with zero bucket.
|
||||
# First positive buckets with exponential interpolation.
|
||||
load 10m
|
||||
histogram_quantile_3 {{schema:0 count:24 sum:100 z_bucket:4 z_bucket_w:0.001 buckets:[2 3 0 1 4] n_buckets:[2 3 0 1 4]}}x1
|
||||
|
||||
|
@ -456,31 +475,34 @@ eval instant at 10m histogram_quantile(1, histogram_quantile_3)
|
|||
{} 16
|
||||
|
||||
eval instant at 10m histogram_quantile(0.99, histogram_quantile_3)
|
||||
{} 15.519999999999996
|
||||
{} 15.34822590920423
|
||||
|
||||
eval instant at 10m histogram_quantile(0.9, histogram_quantile_3)
|
||||
{} 11.200000000000003
|
||||
{} 10.556063286183155
|
||||
|
||||
eval instant at 10m histogram_quantile(0.7, histogram_quantile_3)
|
||||
{} 1.2666666666666657
|
||||
{} 1.2030250360821164
|
||||
|
||||
# Linear interpolation in the zero bucket, symmetrically centered around
|
||||
# the zero point.
|
||||
eval instant at 10m histogram_quantile(0.55, histogram_quantile_3)
|
||||
{} 0.0006000000000000005
|
||||
{} 0.0006
|
||||
|
||||
eval instant at 10m histogram_quantile(0.5, histogram_quantile_3)
|
||||
{} 0
|
||||
|
||||
eval instant at 10m histogram_quantile(0.45, histogram_quantile_3)
|
||||
{} -0.0005999999999999996
|
||||
{} -0.0006
|
||||
|
||||
# Finally negative buckets with mirrored exponential interpolation.
|
||||
eval instant at 10m histogram_quantile(0.3, histogram_quantile_3)
|
||||
{} -1.266666666666667
|
||||
{} -1.2030250360821169
|
||||
|
||||
eval instant at 10m histogram_quantile(0.1, histogram_quantile_3)
|
||||
{} -11.2
|
||||
{} -10.556063286183155
|
||||
|
||||
eval instant at 10m histogram_quantile(0.01, histogram_quantile_3)
|
||||
{} -15.52
|
||||
{} -15.34822590920423
|
||||
|
||||
eval instant at 10m histogram_quantile(0, histogram_quantile_3)
|
||||
{} -16
|
||||
|
@ -490,6 +512,90 @@ eval_warn instant at 10m histogram_quantile(-1, histogram_quantile_3)
|
|||
|
||||
clear
|
||||
|
||||
# Try different schemas. (The interpolation logic must not depend on the schema.)
|
||||
clear
|
||||
load 1m
|
||||
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 5]}}
|
||||
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 5]}}
|
||||
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 5]}}
|
||||
|
||||
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
||||
{schema="-1"} 2.0
|
||||
{schema="0"} 1.4142135623730951
|
||||
{schema="+1"} 1.189207
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 2, var_res_histogram{schema="-1"})
|
||||
{schema="-1"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 1.4142135623730951, var_res_histogram{schema="0"})
|
||||
{schema="0"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 1.189207, var_res_histogram{schema="+1"})
|
||||
{schema="+1"} 0.5
|
||||
|
||||
# The same as above, but one bucket "further to the right".
|
||||
clear
|
||||
load 1m
|
||||
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 buckets:[0 0 5]}}
|
||||
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 buckets:[0 0 5]}}
|
||||
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 buckets:[0 0 5]}}
|
||||
|
||||
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
||||
{schema="-1"} 8.0
|
||||
{schema="0"} 2.82842712474619
|
||||
{schema="+1"} 1.6817928305074292
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 8, var_res_histogram{schema="-1"})
|
||||
{schema="-1"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 2.82842712474619, var_res_histogram{schema="0"})
|
||||
{schema="0"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(0, 1.6817928305074292, var_res_histogram{schema="+1"})
|
||||
{schema="+1"} 0.5
|
||||
|
||||
# And everything again but for negative buckets.
|
||||
clear
|
||||
load 1m
|
||||
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 5]}}
|
||||
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 5]}}
|
||||
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 5]}}
|
||||
|
||||
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
||||
{schema="-1"} -2.0
|
||||
{schema="0"} -1.4142135623730951
|
||||
{schema="+1"} -1.189207
|
||||
|
||||
eval instant at 1m histogram_fraction(-2, 0, var_res_histogram{schema="-1"})
|
||||
{schema="-1"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(-1.4142135623730951, 0, var_res_histogram{schema="0"})
|
||||
{schema="0"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(-1.189207, 0, var_res_histogram{schema="+1"})
|
||||
{schema="+1"} 0.5
|
||||
|
||||
clear
|
||||
load 1m
|
||||
var_res_histogram{schema="-1"} {{schema:-1 sum:6 count:5 n_buckets:[0 0 5]}}
|
||||
var_res_histogram{schema="0"} {{schema:0 sum:4 count:5 n_buckets:[0 0 5]}}
|
||||
var_res_histogram{schema="+1"} {{schema:1 sum:4 count:5 n_buckets:[0 0 5]}}
|
||||
|
||||
eval instant at 1m histogram_quantile(0.5, var_res_histogram)
|
||||
{schema="-1"} -8.0
|
||||
{schema="0"} -2.82842712474619
|
||||
{schema="+1"} -1.6817928305074292
|
||||
|
||||
eval instant at 1m histogram_fraction(-8, 0, var_res_histogram{schema="-1"})
|
||||
{schema="-1"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(-2.82842712474619, 0, var_res_histogram{schema="0"})
|
||||
{schema="0"} 0.5
|
||||
|
||||
eval instant at 1m histogram_fraction(-1.6817928305074292, 0, var_res_histogram{schema="+1"})
|
||||
{schema="+1"} 0.5
|
||||
|
||||
|
||||
# Apply fraction function to empty histogram.
|
||||
load 10m
|
||||
histogram_fraction_1 {{}}x1
|
||||
|
@ -515,11 +621,18 @@ eval instant at 10m histogram_fraction(-0.001, 0, histogram_fraction_2)
|
|||
eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_2)
|
||||
{} 0.16666666666666666
|
||||
|
||||
# Note that this result and the one above add up to 1.
|
||||
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
|
||||
{} 0.8333333333333334
|
||||
|
||||
# We are in the zero bucket, resulting in linear interpolation
|
||||
eval instant at 10m histogram_fraction(0, 0.0005, histogram_fraction_2)
|
||||
{} 0.08333333333333333
|
||||
|
||||
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_2)
|
||||
{} 0.8333333333333334
|
||||
# Demonstrate that the inverse operation with histogram_quantile yields
|
||||
# the original value with the non-trivial result above.
|
||||
eval instant at 10m histogram_quantile(0.08333333333333333, histogram_fraction_2)
|
||||
{} 0.0005
|
||||
|
||||
eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
|
||||
{} 0
|
||||
|
@ -527,17 +640,30 @@ eval instant at 10m histogram_fraction(-inf, -0.001, histogram_fraction_2)
|
|||
eval instant at 10m histogram_fraction(1, 2, histogram_fraction_2)
|
||||
{} 0.25
|
||||
|
||||
# More non-trivial results with interpolation involved below, including
|
||||
# some round-trips via histogram_quantile to prove that the inverse
|
||||
# operation leads to the same results.
|
||||
|
||||
eval instant at 10m histogram_fraction(0, 1.5, histogram_fraction_2)
|
||||
{} 0.4795739585136224
|
||||
|
||||
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_2)
|
||||
{} 0.125
|
||||
{} 0.10375937481971091
|
||||
|
||||
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_2)
|
||||
{} 0.3333333333333333
|
||||
|
||||
eval instant at 10m histogram_fraction(0, 6, histogram_fraction_2)
|
||||
{} 0.6320802083934297
|
||||
|
||||
eval instant at 10m histogram_quantile(0.6320802083934297, histogram_fraction_2)
|
||||
{} 6
|
||||
|
||||
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_2)
|
||||
{} 0.2916666666666667
|
||||
{} 0.29874687506009634
|
||||
|
||||
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_2)
|
||||
{} 0.16666666666666666
|
||||
{} 0.15250624987980724
|
||||
|
||||
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_2)
|
||||
{} 0
|
||||
|
@ -600,6 +726,12 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_3)
|
|||
eval instant at 10m histogram_fraction(-0.0005, 0, histogram_fraction_3)
|
||||
{} 0.08333333333333333
|
||||
|
||||
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_3)
|
||||
{} 0.9166666666666666
|
||||
|
||||
eval instant at 10m histogram_quantile(0.9166666666666666, histogram_fraction_3)
|
||||
{} -0.0005
|
||||
|
||||
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_3)
|
||||
{} 0
|
||||
|
||||
|
@ -625,16 +757,22 @@ eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_3)
|
|||
{} 0.25
|
||||
|
||||
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_3)
|
||||
{} 0.125
|
||||
{} 0.10375937481971091
|
||||
|
||||
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_3)
|
||||
{} 0.3333333333333333
|
||||
|
||||
eval instant at 10m histogram_fraction(-inf, -6, histogram_fraction_3)
|
||||
{} 0.36791979160657035
|
||||
|
||||
eval instant at 10m histogram_quantile(0.36791979160657035, histogram_fraction_3)
|
||||
{} -6
|
||||
|
||||
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_3)
|
||||
{} 0.2916666666666667
|
||||
{} 0.29874687506009634
|
||||
|
||||
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_3)
|
||||
{} 0.16666666666666666
|
||||
{} 0.15250624987980724
|
||||
|
||||
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_3)
|
||||
{} 0
|
||||
|
@ -684,6 +822,18 @@ eval instant at 10m histogram_fraction(0, 0.001, histogram_fraction_4)
|
|||
eval instant at 10m histogram_fraction(-0.0005, 0.0005, histogram_fraction_4)
|
||||
{} 0.08333333333333333
|
||||
|
||||
eval instant at 10m histogram_fraction(-inf, 0.0005, histogram_fraction_4)
|
||||
{} 0.5416666666666666
|
||||
|
||||
eval instant at 10m histogram_quantile(0.5416666666666666, histogram_fraction_4)
|
||||
{} 0.0005
|
||||
|
||||
eval instant at 10m histogram_fraction(-inf, -0.0005, histogram_fraction_4)
|
||||
{} 0.4583333333333333
|
||||
|
||||
eval instant at 10m histogram_quantile(0.4583333333333333, histogram_fraction_4)
|
||||
{} -0.0005
|
||||
|
||||
eval instant at 10m histogram_fraction(0.001, inf, histogram_fraction_4)
|
||||
{} 0.4166666666666667
|
||||
|
||||
|
@ -694,31 +844,31 @@ eval instant at 10m histogram_fraction(1, 2, histogram_fraction_4)
|
|||
{} 0.125
|
||||
|
||||
eval instant at 10m histogram_fraction(1.5, 2, histogram_fraction_4)
|
||||
{} 0.0625
|
||||
{} 0.051879687409855414
|
||||
|
||||
eval instant at 10m histogram_fraction(1, 8, histogram_fraction_4)
|
||||
{} 0.16666666666666666
|
||||
|
||||
eval instant at 10m histogram_fraction(1, 6, histogram_fraction_4)
|
||||
{} 0.14583333333333334
|
||||
{} 0.14937343753004825
|
||||
|
||||
eval instant at 10m histogram_fraction(1.5, 6, histogram_fraction_4)
|
||||
{} 0.08333333333333333
|
||||
{} 0.07625312493990366
|
||||
|
||||
eval instant at 10m histogram_fraction(-2, -1, histogram_fraction_4)
|
||||
{} 0.125
|
||||
|
||||
eval instant at 10m histogram_fraction(-2, -1.5, histogram_fraction_4)
|
||||
{} 0.0625
|
||||
{} 0.051879687409855456
|
||||
|
||||
eval instant at 10m histogram_fraction(-8, -1, histogram_fraction_4)
|
||||
{} 0.16666666666666666
|
||||
|
||||
eval instant at 10m histogram_fraction(-6, -1, histogram_fraction_4)
|
||||
{} 0.14583333333333334
|
||||
{} 0.14937343753004817
|
||||
|
||||
eval instant at 10m histogram_fraction(-6, -1.5, histogram_fraction_4)
|
||||
{} 0.08333333333333333
|
||||
{} 0.07625312493990362
|
||||
|
||||
eval instant at 10m histogram_fraction(42, 3.1415, histogram_fraction_4)
|
||||
{} 0
|
||||
|
|
|
@ -153,19 +153,31 @@ func bucketQuantile(q float64, buckets buckets) (float64, bool, bool) {
|
|||
|
||||
// histogramQuantile calculates the quantile 'q' based on the given histogram.
|
||||
//
|
||||
// The quantile value is interpolated assuming a linear distribution within a
|
||||
// bucket.
|
||||
// TODO(beorn7): Find an interpolation method that is a better fit for
|
||||
// exponential buckets (and think about configurable interpolation).
|
||||
// For custom buckets, the result is interpolated linearly, i.e. it is assumed
|
||||
// the observations are uniformly distributed within each bucket. (This is a
|
||||
// quite blunt assumption, but it is consistent with the interpolation method
|
||||
// used for classic histograms so far.)
|
||||
//
|
||||
// For exponential buckets, the interpolation is done under the assumption that
|
||||
// the samples within each bucket are distributed in a way that they would
|
||||
// uniformly populate the buckets in a hypothetical histogram with higher
|
||||
// resolution. For example, if the rank calculation suggests that the requested
|
||||
// quantile is right in the middle of the population of the (1,2] bucket, we
|
||||
// assume the quantile would be right at the bucket boundary between the two
|
||||
// buckets the (1,2] bucket would be divided into if the histogram had double
|
||||
// the resolution, which is 2**2**-1 = 1.4142... We call this exponential
|
||||
// interpolation.
|
||||
//
|
||||
// However, for a quantile that ends up in the zero bucket, this method isn't
|
||||
// very helpful (because there is an infinite number of buckets close to zero,
|
||||
// so we would have to assume zero as the result). Therefore, we return to
|
||||
// linear interpolation in the zero bucket.
|
||||
//
|
||||
// A natural lower bound of 0 is assumed if the histogram has only positive
|
||||
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
|
||||
// only negative buckets.
|
||||
// TODO(beorn7): Come to terms if we want that.
|
||||
//
|
||||
// There are a number of special cases (once we have a way to report errors
|
||||
// happening during evaluations of AST functions, we should report those
|
||||
// explicitly):
|
||||
// There are a number of special cases:
|
||||
//
|
||||
// If the histogram has 0 observations, NaN is returned.
|
||||
//
|
||||
|
@ -193,9 +205,9 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
rank float64
|
||||
)
|
||||
|
||||
// if there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator
|
||||
// if the q < 0.5, use the forward iterator
|
||||
// if the q >= 0.5, use the reverse iterator
|
||||
// If there are NaN observations in the histogram (h.Sum is NaN), use the forward iterator.
|
||||
// If q < 0.5, use the forward iterator.
|
||||
// If q >= 0.5, use the reverse iterator.
|
||||
if math.IsNaN(h.Sum) || q < 0.5 {
|
||||
it = h.AllBucketIterator()
|
||||
rank = q * h.Count
|
||||
|
@ -260,8 +272,29 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
rank = count - rank
|
||||
}
|
||||
|
||||
// TODO(codesome): Use a better estimation than linear.
|
||||
return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
|
||||
// The fraction of how far we are into the current bucket.
|
||||
fraction := rank / bucket.Count
|
||||
|
||||
// Return linear interpolation for custom buckets and for quantiles that
|
||||
// end up in the zero bucket.
|
||||
if h.UsesCustomBuckets() || (bucket.Lower <= 0 && bucket.Upper >= 0) {
|
||||
return bucket.Lower + (bucket.Upper-bucket.Lower)*fraction
|
||||
}
|
||||
|
||||
// For exponential buckets, we interpolate on a logarithmic scale. On a
|
||||
// logarithmic scale, the exponential bucket boundaries (for any schema)
|
||||
// become linear (every bucket has the same width). Therefore, after
|
||||
// taking the logarithm of both bucket boundaries, we can use the
|
||||
// calculated fraction in the same way as for linear interpolation (see
|
||||
// above). Finally, we return to the normal scale by applying the
|
||||
// exponential function to the result.
|
||||
logLower := math.Log2(math.Abs(bucket.Lower))
|
||||
logUpper := math.Log2(math.Abs(bucket.Upper))
|
||||
if bucket.Lower > 0 { // Positive bucket.
|
||||
return math.Exp2(logLower + (logUpper-logLower)*fraction)
|
||||
}
|
||||
// Otherwise, we are in a negative bucket and have to mirror things.
|
||||
return -math.Exp2(logUpper + (logLower-logUpper)*(1-fraction))
|
||||
}
|
||||
|
||||
// histogramFraction calculates the fraction of observations between the
|
||||
|
@ -271,8 +304,8 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
// histogramQuantile(0.9, h) returns 123.4, then histogramFraction(-Inf, 123.4, h)
|
||||
// returns 0.9.
|
||||
//
|
||||
// The same notes (and TODOs) with regard to interpolation and assumptions about
|
||||
// the zero bucket boundaries apply as for histogramQuantile.
|
||||
// The same notes with regard to interpolation and assumptions about the zero
|
||||
// bucket boundaries apply as for histogramQuantile.
|
||||
//
|
||||
// Whether either boundary is inclusive or exclusive doesn’t actually matter as
|
||||
// long as interpolation has to be performed anyway. In the case of a boundary
|
||||
|
@ -310,7 +343,35 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
|
|||
)
|
||||
for it.Next() {
|
||||
b := it.At()
|
||||
if b.Lower < 0 && b.Upper > 0 {
|
||||
zeroBucket := false
|
||||
|
||||
// interpolateLinearly is used for custom buckets to be
|
||||
// consistent with the linear interpolation known from classic
|
||||
// histograms. It is also used for the zero bucket.
|
||||
interpolateLinearly := func(v float64) float64 {
|
||||
return rank + b.Count*(v-b.Lower)/(b.Upper-b.Lower)
|
||||
}
|
||||
|
||||
// interpolateExponentially is using the same exponential
|
||||
// interpolation method as above for histogramQuantile. This
|
||||
// method is a better fit for exponential bucketing.
|
||||
interpolateExponentially := func(v float64) float64 {
|
||||
var (
|
||||
logLower = math.Log2(math.Abs(b.Lower))
|
||||
logUpper = math.Log2(math.Abs(b.Upper))
|
||||
logV = math.Log2(math.Abs(v))
|
||||
fraction float64
|
||||
)
|
||||
if v > 0 {
|
||||
fraction = (logV - logLower) / (logUpper - logLower)
|
||||
} else {
|
||||
fraction = 1 - ((logV - logUpper) / (logLower - logUpper))
|
||||
}
|
||||
return rank + b.Count*fraction
|
||||
}
|
||||
|
||||
if b.Lower <= 0 && b.Upper >= 0 {
|
||||
zeroBucket = true
|
||||
switch {
|
||||
case len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0:
|
||||
// This is the zero bucket and the histogram has only
|
||||
|
@ -325,10 +386,12 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
|
|||
}
|
||||
}
|
||||
if !lowerSet && b.Lower >= lower {
|
||||
// We have hit the lower value at the lower bucket boundary.
|
||||
lowerRank = rank
|
||||
lowerSet = true
|
||||
}
|
||||
if !upperSet && b.Lower >= upper {
|
||||
// We have hit the upper value at the lower bucket boundary.
|
||||
upperRank = rank
|
||||
upperSet = true
|
||||
}
|
||||
|
@ -336,11 +399,21 @@ func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float6
|
|||
break
|
||||
}
|
||||
if !lowerSet && b.Lower < lower && b.Upper > lower {
|
||||
lowerRank = rank + b.Count*(lower-b.Lower)/(b.Upper-b.Lower)
|
||||
// The lower value is in this bucket.
|
||||
if h.UsesCustomBuckets() || zeroBucket {
|
||||
lowerRank = interpolateLinearly(lower)
|
||||
} else {
|
||||
lowerRank = interpolateExponentially(lower)
|
||||
}
|
||||
lowerSet = true
|
||||
}
|
||||
if !upperSet && b.Lower < upper && b.Upper > upper {
|
||||
upperRank = rank + b.Count*(upper-b.Lower)/(b.Upper-b.Lower)
|
||||
// The upper value is in this bucket.
|
||||
if h.UsesCustomBuckets() || zeroBucket {
|
||||
upperRank = interpolateLinearly(upper)
|
||||
} else {
|
||||
upperRank = interpolateExponentially(upper)
|
||||
}
|
||||
upperSet = true
|
||||
}
|
||||
if lowerSet && upperSet {
|
||||
|
|
Loading…
Reference in a new issue