chunks: implement xor encoding

This commit is contained in:
Fabian Reinartz 2016-11-20 14:33:00 +01:00
parent 342aa82505
commit 7874d28f32
4 changed files with 576 additions and 26 deletions

View file

@ -121,6 +121,198 @@ func (c *rawChunk) append(b []byte) error {
return nil
}
type bitChunk struct {
d []byte
sz int
pos uint32 // bytes used in the chunk
count uint32 // valid bits in last byte
// Read copies of above values used when retrieving iterators.
rl uint32
rcount uint32
}
type bit bool
const (
zero bit = false
one bit = true
)
func newBitChunk(sz int, enc Encoding) bitChunk {
c := bitChunk{d: make([]byte, sz+1), pos: 1, count: 8}
c.d[0] = byte(enc)
return c
}
func (c *bitChunk) encoding() Encoding {
return Encoding(c.d[0])
}
func (c *bitChunk) Data() []byte {
return c.d[:c.pos]
}
func (c *bitChunk) reader() *bitChunkReader {
fmt.Println(len(c.d), c.pos)
return &bitChunkReader{d: c.d[1 : c.pos+1], count: 8}
}
type bitChunkReader struct {
d []byte
count uint8
l uint32
}
func (r *bitChunkReader) readBit() (bit, error) {
if len(r.d) == 0 {
return false, io.EOF
}
if r.count == 0 {
r.d = r.d[1:]
// did we just run out of stuff to read?
if len(r.d) == 0 {
return false, io.EOF
}
r.count = 8
}
r.count--
d := r.d[0] & 0x80
r.d[0] <<= 1
return d != 0, nil
}
func (r *bitChunkReader) readByte() (byte, error) {
if len(r.d) == 0 {
return 0, io.EOF
}
if r.count == 0 {
r.d = r.d[1:]
if len(r.d) == 0 {
return 0, io.EOF
}
r.count = 8
}
if r.count == 8 {
r.count = 0
return r.d[0], nil
}
byt := r.d[0]
r.d = r.d[1:]
if len(r.d) == 0 {
return 0, io.EOF
}
byt |= r.d[0] >> r.count
r.d[0] <<= (8 - r.count)
return byt, nil
}
func (r *bitChunkReader) readBits(nbits int) (uint64, error) {
var u uint64
for nbits >= 8 {
byt, err := r.readByte()
if err != nil {
return 0, err
}
u = (u << 8) | uint64(byt)
nbits -= 8
}
if nbits == 0 {
return u, nil
}
if nbits > int(r.count) {
u = (u << uint(r.count)) | uint64(r.d[0]>>(8-r.count))
nbits -= int(r.count)
r.d = r.d[1:]
if len(r.d) == 0 {
return 0, io.EOF
}
r.count = 8
}
u = (u << uint(nbits)) | uint64(r.d[0]>>(8-uint(nbits)))
r.d[0] <<= uint(nbits)
r.count -= uint8(nbits)
return u, nil
}
// append appends the first nbits bits from b into the chunk.
// b must contain at least nbits bits.
// We are using fixed 16 bytes as it might perform better due to
// more static assumptions.
func (c *bitChunk) append(b [20]byte, nbits int) error {
if nbits > 8*(len(c.d)-int(c.pos)-1)-int(c.count) {
return ErrChunkFull
}
c.writeBits(b, nbits)
// Swap the working length and count integers into the ones used
// to retrieve iterators. This allows to concurrently retrieve
// iteartors while appending to a chunk.
// This does not make it safe for concurrent appends!
atomic.StoreUint32(&c.rl, c.pos)
atomic.StoreUint32(&c.rcount, c.count)
return nil
}
func (c *bitChunk) writeBit(bit bit) {
if c.count == 0 {
c.pos++
c.count = 8
}
if bit {
c.d[c.pos] |= 1 << (c.count - 1)
}
c.count--
}
func (c *bitChunk) writeByte(byt byte) {
if c.count == 0 {
c.pos++
c.count = 8
}
// fill up b.b with b.count bits from byt
c.d[c.pos] |= byt >> (8 - c.count)
c.pos++
c.d[c.pos] = byt << c.count
}
func (c *bitChunk) writeBits(b [20]byte, nbits int) {
i := 0
for nbits >= 8 {
c.writeByte(b[i])
i++
nbits -= 8
}
bi := b[i]
for nbits > 0 {
c.writeBit((bi >> 7) == 1)
bi <<= 1
nbits--
}
}
// PlainChunk implements a Chunk using simple 16 byte representations
// of sample pairs.
type PlainChunk struct {

View file

@ -105,6 +105,7 @@ func benchmarkIterator(b *testing.B, newChunk func(int) Chunk) {
b.ReportAllocs()
b.ResetTimer()
fmt.Println("num", b.N)
res := make([]model.SamplePair, 0, 1024)
for i := 0; i < len(chunks); i++ {
@ -115,7 +116,7 @@ func benchmarkIterator(b *testing.B, newChunk func(int) Chunk) {
res = append(res, s)
}
if it.Err() != io.EOF {
b.Fatal(it.Err())
require.NoError(b, it.Err())
}
res = res[:0]
}
@ -133,6 +134,18 @@ func BenchmarkDoubleDeltaIterator(b *testing.B) {
})
}
func BenchmarkXORIterator(b *testing.B) {
benchmarkIterator(b, func(sz int) Chunk {
return NewXORChunk(sz)
})
}
func BenchmarkXORAppender(b *testing.B) {
benchmarkAppender(b, func(sz int) Chunk {
return NewXORChunk(sz)
})
}
func benchmarkAppender(b *testing.B, newChunk func(int) Chunk) {
var (
baseT = model.Now()

View file

@ -1,63 +1,347 @@
package chunks
import (
"encoding/binary"
"math"
bits "github.com/dgryski/go-bits"
"github.com/prometheus/common/model"
)
// XORChunk holds XOR encoded sample data.
type XORChunk struct {
rawChunk
num uint16
bitChunk
}
// NewXORChunk returns a new chunk with XOR encoding of the given size.
func NewXORChunk(sz int) *XORChunk {
return &XORChunk{rawChunk: newRawChunk(sz, EncXOR)}
return &XORChunk{bitChunk: newBitChunk(sz, EncXOR)}
}
// Appender implements the Chunk interface.
func (c *XORChunk) Appender() Appender {
return &xorAppender{c: &c.rawChunk}
return &xorAppender{c: c, pos: 1}
}
// Iterator implements the Chunk interface.
func (c *XORChunk) Iterator() Iterator {
return &xorIterator{d: c.d[1:c.l]}
return &xorIterator{br: c.bitChunk.reader(), numTotal: c.num}
}
type xorAppender struct {
c *rawChunk
num int
buf [16]byte
c *XORChunk
lastV float64
lastT int64
lastTDelta uint64
t int64
v float64
buf [20]byte // bits written for current sample. 17 to avoid if condition in hot path.
pos uint8 // num of bytes in buf
count uint8 // number of bits in last buf byte
leading uint8
trailing uint8
finished bool
tDelta uint64
}
func (a *xorAppender) Append(ts model.Time, v model.SampleValue) error {
if a.num == 0 {
n := binary.PutVarint(a.buf[:], int64(ts))
binary.BigEndian.PutUint64(a.buf[n:], math.Float64bits(float64(v)))
if err := a.c.append(a.buf[:n+8]); err != nil {
return err
// TODO(fabxc): remove Prometheus types from interface.
return a.append(int64(ts), float64(v))
}
func (a *xorAppender) append(t int64, v float64) error {
// Reset bit buffer.
a.buf = [20]byte{}
a.count = 8
a.pos = 0
if a.c.num > 1 {
tDelta := uint64(t - a.t)
dod := int64(tDelta - a.tDelta)
// Gorilla has a max resolution of seconds, Prometheus milliseconds.
// Thus we use higher value range steps with larger bit size.
switch {
case dod == 0:
a.writeBit(zero)
case -8191 <= dod && dod <= 8192:
a.writeBits(0x02, 2) // '10'
a.writeBits(uint64(dod), 14)
case -65535 <= dod && dod <= 65536:
a.writeBits(0x06, 3) // '110'
a.writeBits(uint64(dod), 17)
case -524287 <= dod && dod <= 524288:
a.writeBits(0x0e, 4) // '1110'
a.writeBits(uint64(dod), 20)
default:
a.writeBits(0x0f, 4) // '1111'
a.writeBits(uint64(dod), 64)
}
a.lastT, a.lastV = int64(ts), float64(v)
a.num++
return nil
}
if a.num == 1 {
a.lastTDelta = uint64(int64(ts) - a.lastT)
a.tDelta = tDelta
a.writeVDelta(v)
} else if a.c.num == 0 {
// TODO: store varint time?
a.writeBits(uint64(t), 64)
a.writeBits(math.Float64bits(v), 64)
} else {
a.tDelta = uint64(t - a.t)
// TODO: use varint or other encoding for first delta?
a.writeBits(uint64(a.tDelta), 64)
a.writeVDelta(v)
}
a.num++
if err := a.c.append(a.buf, int(a.pos+1)*8-int(a.count)); err != nil {
return err
}
a.t = t
a.v = v
a.c.num++
// TODO: also preserve tDelta even though it doesn't really matter at this point.
return nil
}
func (a *xorAppender) writeVDelta(v float64) {
vDelta := math.Float64bits(v) ^ math.Float64bits(a.v)
if vDelta == 0 {
a.writeBit(zero)
return
}
a.writeBit(one)
leading := uint8(bits.Clz(vDelta))
trailing := uint8(bits.Ctz(vDelta))
// clamp number of leading zeros to avoid overflow when encoding
if leading >= 32 {
leading = 31
}
// TODO(dgryski): check if it's 'cheaper' to reset the leading/trailing bits instead
if a.leading != ^uint8(0) && leading >= a.leading && trailing >= a.trailing {
a.writeBit(zero)
a.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing))
} else {
a.leading, a.trailing = leading, trailing
a.writeBit(one)
a.writeBits(uint64(leading), 5)
// Note that if leading == trailing == 0, then sigbits == 64. But that value doesn't actually fit into the 6 bits we have.
// Luckily, we never need to encode 0 significant bits, since that would put us in the other case (vdelta == 0).
// So instead we write out a 0 and adjust it back to 64 on unpacking.
sigbits := 64 - leading - trailing
a.writeBits(uint64(sigbits), 6)
a.writeBits(vDelta>>trailing, int(sigbits))
}
}
func (a *xorAppender) writeBits(u uint64, nbits int) {
u <<= (64 - uint(nbits))
for nbits >= 8 {
byt := byte(u >> 56)
a.writeByte(byt)
u <<= 8
nbits -= 8
}
for nbits > 0 {
a.writeBit((u >> 63) == 1)
u <<= 1
nbits--
}
}
func (a *xorAppender) writeBit(bit bit) {
if a.count == 0 {
a.pos++
a.count = 8
}
if bit {
a.buf[a.pos] |= 1 << (a.count - 1)
}
a.count--
}
func (a *xorAppender) writeByte(byt byte) {
if a.count == 0 {
a.pos++
a.count = 8
}
// fill up b.b with b.count bits from byt
a.buf[a.pos] |= byt >> (8 - a.count)
a.pos++
a.buf[a.pos] = byt << a.count
}
type xorIterator struct {
d []byte
br *bitChunkReader
numTotal uint16
numRead uint16
t int64
val float64
leading uint8
trailing uint8
tDelta int64
err error
}
func (it *xorIterator) Values() (int64, float64) {
return it.t, it.val
}
func (it *xorIterator) NextB() bool {
if it.err != nil || it.numRead == it.numTotal {
return false
}
var d byte
var dod int32
var sz uint
var tDelta int64
if it.numRead == 0 {
t, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
v, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
it.t = int64(t)
it.val = math.Float64frombits(v)
it.numRead++
return true
}
if it.numRead == 1 {
tDelta, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
it.tDelta = int64(tDelta)
it.t = it.t + it.tDelta
goto ReadValue
}
// read delta-of-delta
for i := 0; i < 4; i++ {
d <<= 1
bit, err := it.br.readBit()
if err != nil {
it.err = err
return false
}
if bit == zero {
break
}
d |= 1
}
switch d {
case 0x00:
// dod == 0
case 0x02:
sz = 14
case 0x06:
sz = 17
case 0x0e:
sz = 20
case 0x0f:
bits, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
dod = int32(bits)
}
if sz != 0 {
bits, err := it.br.readBits(int(sz))
if err != nil {
it.err = err
return false
}
if bits > (1 << (sz - 1)) {
// or something
bits = bits - (1 << sz)
}
dod = int32(bits)
}
tDelta = it.tDelta + int64(dod)
it.tDelta = tDelta
it.t = it.t + it.tDelta
ReadValue:
// read compressed value
bit, err := it.br.readBit()
if err != nil {
it.err = err
return false
}
if bit == zero {
// it.val = it.val
} else {
bit, itErr := it.br.readBit()
if itErr != nil {
it.err = err
return false
}
if bit == zero {
// reuse leading/trailing zero bits
// it.leading, it.trailing = it.leading, it.trailing
} else {
bits, err := it.br.readBits(5)
if err != nil {
it.err = err
return false
}
it.leading = uint8(bits)
bits, err = it.br.readBits(6)
if err != nil {
it.err = err
return false
}
mbits := uint8(bits)
// 0 significant bits here means we overflowed and we actually need 64; see comment in encoder
if mbits == 0 {
mbits = 64
}
it.trailing = 64 - it.leading - mbits
}
mbits := int(64 - it.leading - it.trailing)
bits, err := it.br.readBits(mbits)
if err != nil {
it.err = err
return false
}
vbits := math.Float64bits(it.val)
vbits ^= (bits << it.trailing)
it.val = math.Float64frombits(vbits)
}
it.numRead++
return true
}
func (it *xorIterator) First() (model.SamplePair, bool) {
@ -73,5 +357,5 @@ func (it *xorIterator) Next() (model.SamplePair, bool) {
}
func (it *xorIterator) Err() error {
return nil
return it.err
}

61
chunks/xor_test.go Normal file
View file

@ -0,0 +1,61 @@
package chunks
import (
"math/rand"
"testing"
"github.com/prometheus/common/model"
"github.com/stretchr/testify/require"
)
func testXORChunk(t *testing.T) {
ts := model.Time(124213233)
v := int64(99954541)
var input []model.SamplePair
for i := 0; i < 10000; i++ {
ts += model.Time(rand.Int63n(50000) + 1)
v += rand.Int63n(1000)
if rand.Int() > 0 {
v *= -1
}
input = append(input, model.SamplePair{
Timestamp: ts,
Value: model.SampleValue(v),
})
}
c := NewXORChunk(rand.Intn(3000))
app := c.Appender()
for i, s := range input {
err := app.Append(s.Timestamp, s.Value)
if err == ErrChunkFull {
input = input[:i]
break
}
require.NoError(t, err, "at sample %d: %v", i, s)
}
result := []model.SamplePair{}
it := c.Iterator().(*xorIterator)
for {
ok := it.NextB()
if !ok {
break
}
t, v := it.Values()
result = append(result, model.SamplePair{Timestamp: model.Time(t), Value: model.SampleValue(v)})
}
require.NoError(t, it.Err())
require.Equal(t, input, result)
}
func TestXORChunk(t *testing.T) {
for i := 0; i < 1000000; i++ {
testXORChunk(t)
}
}