Labels benchmarks: remove artefact of small symbol-tables

Symbol tables with fewer than 128 entries, so everything can be
represented as a single byte, are not realistic.

Stuff the symbol table with fake entries before adding the real ones.

Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit is contained in:
Bryan Boreham 2024-06-21 16:49:07 +01:00
parent 2ba7bc9446
commit 7a82e4b503

View file

@ -466,6 +466,38 @@ func TestLabels_DropMetricName(t *testing.T) {
require.True(t, Equal(original, check)) require.True(t, Equal(original, check))
} }
func ScratchBuilderForBenchmark() ScratchBuilder {
// (Only relevant to -tags dedupelabels: stuff the symbol table before adding the real labels, to avoid having everything fitting into 1 byte.)
b := NewScratchBuilder(256)
for i := 0; i < 256; i++ {
b.Add(fmt.Sprintf("name%d", i), fmt.Sprintf("value%d", i))
}
b.Labels()
b.Reset()
return b
}
func NewForBenchmark(ls ...Label) Labels {
b := ScratchBuilderForBenchmark()
for _, l := range ls {
b.Add(l.Name, l.Value)
}
b.Sort()
return b.Labels()
}
func FromStringsForBenchmark(ss ...string) Labels {
if len(ss)%2 != 0 {
panic("invalid number of strings")
}
b := ScratchBuilderForBenchmark()
for i := 0; i < len(ss); i += 2 {
b.Add(ss[i], ss[i+1])
}
b.Sort()
return b.Labels()
}
// BenchmarkLabels_Get was written to check whether a binary search can improve the performance vs the linear search implementation // BenchmarkLabels_Get was written to check whether a binary search can improve the performance vs the linear search implementation
// The results have shown that binary search would only be better when searching last labels in scenarios with more than 10 labels. // The results have shown that binary search would only be better when searching last labels in scenarios with more than 10 labels.
// In the following list, `old` is the linear search while `new` is the binary search implementation (without calling sort.Search, which performs even worse here) // In the following list, `old` is the linear search while `new` is the binary search implementation (without calling sort.Search, which performs even worse here)
@ -488,7 +520,7 @@ func BenchmarkLabels_Get(b *testing.B) {
} }
for _, size := range []int{5, 10, maxLabels} { for _, size := range []int{5, 10, maxLabels} {
b.Run(fmt.Sprintf("with %d labels", size), func(b *testing.B) { b.Run(fmt.Sprintf("with %d labels", size), func(b *testing.B) {
labels := New(allLabels[:size]...) labels := NewForBenchmark(allLabels[:size]...)
for _, scenario := range []struct { for _, scenario := range []struct {
desc, label string desc, label string
}{ }{
@ -520,33 +552,33 @@ var comparisonBenchmarkScenarios = []struct {
}{ }{
{ {
"equal", "equal",
FromStrings("a_label_name", "a_label_value", "another_label_name", "another_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value", "another_label_name", "another_label_value"),
FromStrings("a_label_name", "a_label_value", "another_label_name", "another_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value", "another_label_name", "another_label_value"),
}, },
{ {
"not equal", "not equal",
FromStrings("a_label_name", "a_label_value", "another_label_name", "another_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value", "another_label_name", "another_label_value"),
FromStrings("a_label_name", "a_label_value", "another_label_name", "a_different_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value", "another_label_name", "a_different_label_value"),
}, },
{ {
"different sizes", "different sizes",
FromStrings("a_label_name", "a_label_value", "another_label_name", "another_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value", "another_label_name", "another_label_value"),
FromStrings("a_label_name", "a_label_value"), FromStringsForBenchmark("a_label_name", "a_label_value"),
}, },
{ {
"lots", "lots",
FromStrings("aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg", "hhh", "iii", "jjj", "kkk", "lll", "mmm", "nnn", "ooo", "ppp", "qqq", "rrz"), FromStringsForBenchmark("aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg", "hhh", "iii", "jjj", "kkk", "lll", "mmm", "nnn", "ooo", "ppp", "qqq", "rrz"),
FromStrings("aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg", "hhh", "iii", "jjj", "kkk", "lll", "mmm", "nnn", "ooo", "ppp", "qqq", "rrr"), FromStringsForBenchmark("aaa", "bbb", "ccc", "ddd", "eee", "fff", "ggg", "hhh", "iii", "jjj", "kkk", "lll", "mmm", "nnn", "ooo", "ppp", "qqq", "rrr"),
}, },
{ {
"real long equal", "real long equal",
FromStrings("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"), FromStringsForBenchmark("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"),
FromStrings("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"), FromStringsForBenchmark("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"),
}, },
{ {
"real long different end", "real long different end",
FromStrings("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"), FromStringsForBenchmark("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "d3ec90b2-4975-4607-b45d-b9ad64bb417e"),
FromStrings("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "deadbeef-0000-1111-2222-b9ad64bb417e"), FromStringsForBenchmark("__name__", "kube_pod_container_status_last_terminated_exitcode", "cluster", "prod-af-north-0", " container", "prometheus", "instance", "kube-state-metrics-0:kube-state-metrics:ksm", "job", "kube-state-metrics/kube-state-metrics", " namespace", "observability-prometheus", "pod", "observability-prometheus-0", "uid", "deadbeef-0000-1111-2222-b9ad64bb417e"),
}, },
} }
@ -834,7 +866,7 @@ func BenchmarkBuilder(b *testing.B) {
} }
func BenchmarkLabels_Copy(b *testing.B) { func BenchmarkLabels_Copy(b *testing.B) {
l := New(benchmarkLabels...) l := NewForBenchmark(benchmarkLabels...)
for i := 0; i < b.N; i++ { for i := 0; i < b.N; i++ {
l = l.Copy() l = l.Copy()