mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-12 06:17:27 -08:00
Promtool: Add support for compaction analysis (#8940)
* Extend promtool to support compaction analysis This commit extends the promtool tsdb analyze command to help troubleshoot high Prometheus disk usage. The command now plots a distribution of how full chunks are relative to the maximum capacity of 120 samples per chunk. Signed-off-by: fpetkovski <filip.petkovsky@gmail.com> * Update cmd/promtool/tsdb.go Co-authored-by: Bartlomiej Plotka <bwplotka@gmail.com> Co-authored-by: Bartlomiej Plotka <bwplotka@gmail.com>
This commit is contained in:
parent
179b2155d1
commit
7c125aa5fb
|
@ -132,7 +132,7 @@ func main() {
|
|||
benchWriteNumScrapes := tsdbBenchWriteCmd.Flag("scrapes", "Number of scrapes to simulate.").Default("3000").Int()
|
||||
benchSamplesFile := tsdbBenchWriteCmd.Arg("file", "Input file with samples data, default is ("+filepath.Join("..", "..", "tsdb", "testdata", "20kseries.json")+").").Default(filepath.Join("..", "..", "tsdb", "testdata", "20kseries.json")).String()
|
||||
|
||||
tsdbAnalyzeCmd := tsdbCmd.Command("analyze", "Analyze churn, label pair cardinality.")
|
||||
tsdbAnalyzeCmd := tsdbCmd.Command("analyze", "Analyze churn, label pair cardinality and compaction efficiency.")
|
||||
analyzePath := tsdbAnalyzeCmd.Arg("db path", "Database path (default is "+defaultDBPath+").").Default(defaultDBPath).String()
|
||||
analyzeBlockID := tsdbAnalyzeCmd.Arg("block id", "Block to analyze (default is the last block).").String()
|
||||
analyzeLimit := tsdbAnalyzeCmd.Flag("limit", "How many items to show in each list.").Default("20").Int()
|
||||
|
|
|
@ -17,8 +17,10 @@ import (
|
|||
"bufio"
|
||||
"context"
|
||||
"fmt"
|
||||
"github.com/prometheus/prometheus/tsdb/index"
|
||||
"io"
|
||||
"io/ioutil"
|
||||
"math"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
|
@ -561,6 +563,60 @@ func analyzeBlock(path, blockID string, limit int) error {
|
|||
}
|
||||
fmt.Printf("\nHighest cardinality metric names:\n")
|
||||
printInfo(postingInfos)
|
||||
|
||||
return analyzeCompaction(block, ir)
|
||||
}
|
||||
|
||||
func analyzeCompaction(block tsdb.BlockReader, indexr tsdb.IndexReader) (err error) {
|
||||
postingsr, err := indexr.Postings(index.AllPostingsKey())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
chunkr, err := block.Chunks()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer func() {
|
||||
err = tsdb_errors.NewMulti(err, chunkr.Close()).Err()
|
||||
}()
|
||||
|
||||
const maxSamplesPerChunk = 120
|
||||
nBuckets := 10
|
||||
histogram := make([]int, nBuckets)
|
||||
totalChunks := 0
|
||||
for postingsr.Next() {
|
||||
var lbsl = labels.Labels{}
|
||||
var chks []chunks.Meta
|
||||
if err := indexr.Series(postingsr.At(), &lbsl, &chks); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, chk := range chks {
|
||||
// Load the actual data of the chunk.
|
||||
chk, err := chunkr.Chunk(chk.Ref)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
chunkSize := math.Min(float64(chk.NumSamples()), maxSamplesPerChunk)
|
||||
// Calculate the bucket for the chunk and increment it in the histogram.
|
||||
bucket := int(math.Ceil(float64(nBuckets)*chunkSize/maxSamplesPerChunk)) - 1
|
||||
histogram[bucket]++
|
||||
totalChunks++
|
||||
}
|
||||
}
|
||||
|
||||
fmt.Printf("\nCompaction analysis:\n")
|
||||
fmt.Println("Fullness: Amount of samples in chunks (100% is 120 samples)")
|
||||
// Normalize absolute counts to percentages and print them out.
|
||||
for bucket, count := range histogram {
|
||||
percentage := 100.0 * count / totalChunks
|
||||
fmt.Printf("%7d%%: ", (bucket+1)*10)
|
||||
for j := 0; j < percentage; j++ {
|
||||
fmt.Printf("#")
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue