mirror of
https://github.com/prometheus/prometheus.git
synced 2024-12-25 05:34:05 -08:00
Merge pull request #12931 from zenador/warning-non-monotonic-classic-histogram
Add warning when monotonicity is forced in the input to histogram_quantile
This commit is contained in:
commit
b787e5f190
|
@ -1168,10 +1168,14 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
|
||||
for _, mb := range enh.signatureToMetricWithBuckets {
|
||||
if len(mb.buckets) > 0 {
|
||||
res, forcedMonotonicity := bucketQuantile(q, mb.buckets)
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: mb.metric,
|
||||
F: bucketQuantile(q, mb.buckets),
|
||||
F: res,
|
||||
})
|
||||
if forcedMonotonicity {
|
||||
annos.Add(annotations.NewHistogramQuantileForcedMonotonicityInfo(mb.metric.Get(labels.MetricName), args[1].PositionRange()))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -71,15 +71,17 @@ type metricWithBuckets struct {
|
|||
// If q<0, -Inf is returned.
|
||||
//
|
||||
// If q>1, +Inf is returned.
|
||||
func bucketQuantile(q float64, buckets buckets) float64 {
|
||||
//
|
||||
// We also return a bool to indicate if monotonicity needed to be forced.
|
||||
func bucketQuantile(q float64, buckets buckets) (float64, bool) {
|
||||
if math.IsNaN(q) {
|
||||
return math.NaN()
|
||||
return math.NaN(), false
|
||||
}
|
||||
if q < 0 {
|
||||
return math.Inf(-1)
|
||||
return math.Inf(-1), false
|
||||
}
|
||||
if q > 1 {
|
||||
return math.Inf(+1)
|
||||
return math.Inf(+1), false
|
||||
}
|
||||
slices.SortFunc(buckets, func(a, b bucket) int {
|
||||
// We don't expect the bucket boundary to be a NaN.
|
||||
|
@ -92,27 +94,27 @@ func bucketQuantile(q float64, buckets buckets) float64 {
|
|||
return 0
|
||||
})
|
||||
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
|
||||
return math.NaN()
|
||||
return math.NaN(), false
|
||||
}
|
||||
|
||||
buckets = coalesceBuckets(buckets)
|
||||
ensureMonotonic(buckets)
|
||||
forcedMonotonic := ensureMonotonic(buckets)
|
||||
|
||||
if len(buckets) < 2 {
|
||||
return math.NaN()
|
||||
return math.NaN(), false
|
||||
}
|
||||
observations := buckets[len(buckets)-1].count
|
||||
if observations == 0 {
|
||||
return math.NaN()
|
||||
return math.NaN(), false
|
||||
}
|
||||
rank := q * observations
|
||||
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
|
||||
|
||||
if b == len(buckets)-1 {
|
||||
return buckets[len(buckets)-2].upperBound
|
||||
return buckets[len(buckets)-2].upperBound, forcedMonotonic
|
||||
}
|
||||
if b == 0 && buckets[0].upperBound <= 0 {
|
||||
return buckets[0].upperBound
|
||||
return buckets[0].upperBound, forcedMonotonic
|
||||
}
|
||||
var (
|
||||
bucketStart float64
|
||||
|
@ -124,7 +126,7 @@ func bucketQuantile(q float64, buckets buckets) float64 {
|
|||
count -= buckets[b-1].count
|
||||
rank -= buckets[b-1].count
|
||||
}
|
||||
return bucketStart + (bucketEnd-bucketStart)*(rank/count)
|
||||
return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic
|
||||
}
|
||||
|
||||
// histogramQuantile calculates the quantile 'q' based on the given histogram.
|
||||
|
@ -342,37 +344,24 @@ func coalesceBuckets(buckets buckets) buckets {
|
|||
// The assumption that bucket counts increase monotonically with increasing
|
||||
// upperBound may be violated during:
|
||||
//
|
||||
// * Recording rule evaluation of histogram_quantile, especially when rate()
|
||||
// has been applied to the underlying bucket timeseries.
|
||||
// * Evaluation of histogram_quantile computed over federated bucket
|
||||
// timeseries, especially when rate() has been applied.
|
||||
//
|
||||
// This is because scraped data is not made available to rule evaluation or
|
||||
// federation atomically, so some buckets are computed with data from the
|
||||
// most recent scrapes, but the other buckets are missing data from the most
|
||||
// recent scrape.
|
||||
// - Circumstances where data is already inconsistent at the target's side.
|
||||
// - Ingestion via the remote write receiver that Prometheus implements.
|
||||
// - Optimisation of query execution where precision is sacrificed for other
|
||||
// benefits, not by Prometheus but by systems built on top of it.
|
||||
//
|
||||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||||
//
|
||||
// Randomly interspersed partial sampling breaks that guarantee, and rate()
|
||||
// exacerbates it. Specifically, suppose bucket le=1000 has a count of 10 from
|
||||
// 4 samples but the bucket with le=2000 has a count of 7 from 3 samples. The
|
||||
// monotonicity is broken. It is exacerbated by rate() because under normal
|
||||
// operation, cumulative counting of buckets will cause the bucket counts to
|
||||
// diverge such that small differences from missing samples are not a problem.
|
||||
// rate() removes this divergence.)
|
||||
// have counted all c1 observations and perhaps more, so that c >= c1.
|
||||
//
|
||||
// bucketQuantile depends on that monotonicity to do a binary search for the
|
||||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||||
//
|
||||
// As a somewhat hacky solution until ingestion is atomic per scrape, we
|
||||
// calculate the "envelope" of the histogram buckets, essentially removing
|
||||
// any decreases in the count between successive buckets.
|
||||
|
||||
func ensureMonotonic(buckets buckets) {
|
||||
// As a somewhat hacky solution, we calculate the "envelope" of the histogram
|
||||
// buckets, essentially removing any decreases in the count between successive
|
||||
// buckets. We return a bool to indicate if this monotonicity was forced or not.
|
||||
func ensureMonotonic(buckets buckets) bool {
|
||||
forced := false
|
||||
max := buckets[0].count
|
||||
for i := 1; i < len(buckets); i++ {
|
||||
switch {
|
||||
|
@ -380,8 +369,10 @@ func ensureMonotonic(buckets buckets) {
|
|||
max = buckets[i].count
|
||||
case buckets[i].count < max:
|
||||
buckets[i].count = max
|
||||
forced = true
|
||||
}
|
||||
}
|
||||
return forced
|
||||
}
|
||||
|
||||
// quantile calculates the given quantile of a vector of samples.
|
||||
|
|
|
@ -105,7 +105,8 @@ var (
|
|||
MixedFloatsHistogramsWarning = fmt.Errorf("%w: encountered a mix of histograms and floats for metric name", PromQLWarning)
|
||||
MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning)
|
||||
|
||||
PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count:", PromQLInfo)
|
||||
PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count:", PromQLInfo)
|
||||
HistogramQuantileForcedMonotonicityInfo = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (and may give inaccurate results) for metric name", PromQLInfo)
|
||||
)
|
||||
|
||||
type annoErr struct {
|
||||
|
@ -163,3 +164,12 @@ func NewPossibleNonCounterInfo(metricName string, pos posrange.PositionRange) an
|
|||
Err: fmt.Errorf("%w %q", PossibleNonCounterInfo, metricName),
|
||||
}
|
||||
}
|
||||
|
||||
// NewHistogramQuantileForcedMonotonicityInfo is used when the input (classic histograms) to
|
||||
// histogram_quantile needs to be forced to be monotonic.
|
||||
func NewHistogramQuantileForcedMonotonicityInfo(metricName string, pos posrange.PositionRange) annoErr {
|
||||
return annoErr{
|
||||
PositionRange: pos,
|
||||
Err: fmt.Errorf("%w %q", HistogramQuantileForcedMonotonicityInfo, metricName),
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue