mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-13 17:14:05 -08:00
OTLP Receiver: Add tests (#14764)
Signed-off-by: Arve Knudsen <arve.knudsen@gmail.com>
This commit is contained in:
parent
a77f5007f9
commit
bc6c2c5d35
|
@ -10,6 +10,10 @@
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/debbf30360b8d3a0ded8db09c4419d2a9c99b94a/pkg/translator/prometheusremotewrite/helper_test.go
|
||||||
|
// Provenance-includes-license: Apache-2.0
|
||||||
|
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
|
||||||
|
|
||||||
package prometheusremotewrite
|
package prometheusremotewrite
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
@ -18,6 +22,9 @@ import (
|
||||||
|
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
"go.opentelemetry.io/collector/pdata/pcommon"
|
"go.opentelemetry.io/collector/pdata/pcommon"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pmetric"
|
||||||
|
|
||||||
|
"github.com/prometheus/common/model"
|
||||||
|
|
||||||
"github.com/prometheus/prometheus/prompb"
|
"github.com/prometheus/prometheus/prompb"
|
||||||
)
|
)
|
||||||
|
@ -178,3 +185,221 @@ func Test_convertTimeStamp(t *testing.T) {
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestPrometheusConverter_AddSummaryDataPoints(t *testing.T) {
|
||||||
|
ts := pcommon.Timestamp(time.Now().UnixNano())
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
metric func() pmetric.Metric
|
||||||
|
want func() map[uint64]*prompb.TimeSeries
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "summary with start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_summary")
|
||||||
|
metric.SetEmptySummary()
|
||||||
|
|
||||||
|
dp := metric.Summary().DataPoints().AppendEmpty()
|
||||||
|
dp.SetTimestamp(ts)
|
||||||
|
dp.SetStartTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_summary" + countStr},
|
||||||
|
}
|
||||||
|
createdLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_summary" + createdSuffix},
|
||||||
|
}
|
||||||
|
sumLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_summary" + sumStr},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(sumLabels): {
|
||||||
|
Labels: sumLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(createdLabels): {
|
||||||
|
Labels: createdLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: float64(convertTimeStamp(ts)), Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "summary without start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_summary")
|
||||||
|
metric.SetEmptySummary()
|
||||||
|
|
||||||
|
dp := metric.Summary().DataPoints().AppendEmpty()
|
||||||
|
dp.SetTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_summary" + countStr},
|
||||||
|
}
|
||||||
|
sumLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_summary" + sumStr},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(sumLabels): {
|
||||||
|
Labels: sumLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
metric := tt.metric()
|
||||||
|
converter := NewPrometheusConverter()
|
||||||
|
|
||||||
|
converter.addSummaryDataPoints(
|
||||||
|
metric.Summary().DataPoints(),
|
||||||
|
pcommon.NewResource(),
|
||||||
|
Settings{
|
||||||
|
ExportCreatedMetric: true,
|
||||||
|
},
|
||||||
|
metric.Name(),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert.Equal(t, tt.want(), converter.unique)
|
||||||
|
assert.Empty(t, converter.conflicts)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPrometheusConverter_AddHistogramDataPoints(t *testing.T) {
|
||||||
|
ts := pcommon.Timestamp(time.Now().UnixNano())
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
metric func() pmetric.Metric
|
||||||
|
want func() map[uint64]*prompb.TimeSeries
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "histogram with start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_hist")
|
||||||
|
metric.SetEmptyHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
|
||||||
|
pt := metric.Histogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetTimestamp(ts)
|
||||||
|
pt.SetStartTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist" + countStr},
|
||||||
|
}
|
||||||
|
createdLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist" + createdSuffix},
|
||||||
|
}
|
||||||
|
infLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist_bucket"},
|
||||||
|
{Name: model.BucketLabel, Value: "+Inf"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(infLabels): {
|
||||||
|
Labels: infLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(createdLabels): {
|
||||||
|
Labels: createdLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: float64(convertTimeStamp(ts)), Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "histogram without start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_hist")
|
||||||
|
metric.SetEmptyHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
|
||||||
|
pt := metric.Histogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist" + countStr},
|
||||||
|
}
|
||||||
|
infLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist_bucket"},
|
||||||
|
{Name: model.BucketLabel, Value: "+Inf"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(infLabels): {
|
||||||
|
Labels: infLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
metric := tt.metric()
|
||||||
|
converter := NewPrometheusConverter()
|
||||||
|
|
||||||
|
converter.addHistogramDataPoints(
|
||||||
|
metric.Histogram().DataPoints(),
|
||||||
|
pcommon.NewResource(),
|
||||||
|
Settings{
|
||||||
|
ExportCreatedMetric: true,
|
||||||
|
},
|
||||||
|
metric.Name(),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert.Equal(t, tt.want(), converter.unique)
|
||||||
|
assert.Empty(t, converter.conflicts)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -0,0 +1,771 @@
|
||||||
|
// Copyright 2024 The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/247a9f996e09a83cdc25addf70c05e42b8b30186/pkg/translator/prometheusremotewrite/histograms_test.go
|
||||||
|
// Provenance-includes-license: Apache-2.0
|
||||||
|
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
|
||||||
|
|
||||||
|
package prometheusremotewrite
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/prometheus/common/model"
|
||||||
|
"github.com/prometheus/prometheus/prompb"
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pcommon"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pmetric"
|
||||||
|
|
||||||
|
prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus"
|
||||||
|
)
|
||||||
|
|
||||||
|
type expectedBucketLayout struct {
|
||||||
|
wantSpans []prompb.BucketSpan
|
||||||
|
wantDeltas []int64
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertBucketsLayout(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
buckets func() pmetric.ExponentialHistogramDataPointBuckets
|
||||||
|
wantLayout map[int32]expectedBucketLayout
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "zero offset",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(0)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{4, 3, 2, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 1,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{4, -1, -1, -1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 1,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// 4+3, 2+1 = 7, 3 =delta= 7, -4
|
||||||
|
wantDeltas: []int64{7, -4},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 1,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// 4+3+2+1 = 10 =delta= 10
|
||||||
|
wantDeltas: []int64{10},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "offset 1",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(1)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{4, 3, 2, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 2,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{4, -1, -1, -1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 1,
|
||||||
|
Length: 3,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{4, 1, -4}, // 0+4, 3+2, 1+0 = 4, 5, 1
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 1,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{9, -8}, // 0+4+3+2, 1+0+0+0 = 9, 1
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "positive offset",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(4)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{4, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 5,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 12,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{4, -2, -2, 2, -1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 3,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 6,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 4+2, 0+2, 0+0, 0+0, 0+0, 0+0, 0+0, 0+0, 1+0 = 6, 2, 0, 0, 0, 0, 0, 0, 1
|
||||||
|
wantDeltas: []int64{6, -4, -1},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 2,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 3,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 4+2+0+2, 0+0+0+0, 0+0+0+0, 0+0+0+0, 1+0+0+0 = 8, 0, 0, 0, 1
|
||||||
|
// Check from sclaing from previous: 6+2, 0+0, 0+0, 0+0, 1+0 = 8, 0, 0, 0, 1
|
||||||
|
wantDeltas: []int64{8, -7},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "scaledown merges spans",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(4)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{4, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 5,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 8,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{4, -2, -2, 2, -1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 3,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 4,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 4+2, 0+2, 0+0, 0+0, 0+0, 0+0, 1+0 = 6, 2, 0, 0, 0, 0, 1
|
||||||
|
wantDeltas: []int64{6, -4, -1},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 2,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 4+2+0+2, 0+0+0+0, 0+0+0+0, 1+0+0+0 = 8, 0, 0, 1
|
||||||
|
// Check from sclaing from previous: 6+2, 0+0, 0+0, 1+0 = 8, 0, 0, 1
|
||||||
|
wantDeltas: []int64{8, -8, 0, 1},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "negative offset",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(-2)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{3, 1, 0, 0, 0, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: -1,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Offset: 3,
|
||||||
|
Length: 1,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{3, -2, 0},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 3,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 3+1, 0+0, 0+1 = 4, 0, 1
|
||||||
|
wantDeltas: []int64{4, -4, 1},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 0+0+3+1, 0+0+0+0 = 4, 1
|
||||||
|
wantDeltas: []int64{4, -3},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "buckets with gaps of size 1",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(-2)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{3, 1, 0, 1, 0, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: -1,
|
||||||
|
Length: 6,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{3, -2, -1, 1, -1, 1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 3,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 3+1, 0+1, 0+1 = 4, 1, 1
|
||||||
|
wantDeltas: []int64{4, -3, 0},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 2,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 0+0+3+1, 0+1+0+1 = 4, 2
|
||||||
|
wantDeltas: []int64{4, -2},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "buckets with gaps of size 2",
|
||||||
|
buckets: func() pmetric.ExponentialHistogramDataPointBuckets {
|
||||||
|
b := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
b.SetOffset(-2)
|
||||||
|
b.BucketCounts().FromRaw([]uint64{3, 0, 0, 1, 0, 0, 1})
|
||||||
|
return b
|
||||||
|
},
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: -1,
|
||||||
|
Length: 7,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantDeltas: []int64{3, -3, 0, 1, -1, 0, 1},
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 4,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 3+0, 0+1, 0+0, 0+1 = 3, 1, 0, 1
|
||||||
|
wantDeltas: []int64{3, -2, -1, 1},
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: []prompb.BucketSpan{
|
||||||
|
{
|
||||||
|
Offset: 0,
|
||||||
|
Length: 3,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
// Downscale:
|
||||||
|
// 0+0+3+0, 0+1+0+0, 1+0+0+0 = 3, 1, 1
|
||||||
|
wantDeltas: []int64{3, -2, 0},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "zero buckets",
|
||||||
|
buckets: pmetric.NewExponentialHistogramDataPointBuckets,
|
||||||
|
wantLayout: map[int32]expectedBucketLayout{
|
||||||
|
0: {
|
||||||
|
wantSpans: nil,
|
||||||
|
wantDeltas: nil,
|
||||||
|
},
|
||||||
|
1: {
|
||||||
|
wantSpans: nil,
|
||||||
|
wantDeltas: nil,
|
||||||
|
},
|
||||||
|
2: {
|
||||||
|
wantSpans: nil,
|
||||||
|
wantDeltas: nil,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
for scaleDown, wantLayout := range tt.wantLayout {
|
||||||
|
t.Run(fmt.Sprintf("%s-scaleby-%d", tt.name, scaleDown), func(t *testing.T) {
|
||||||
|
gotSpans, gotDeltas := convertBucketsLayout(tt.buckets(), scaleDown)
|
||||||
|
assert.Equal(t, wantLayout.wantSpans, gotSpans)
|
||||||
|
assert.Equal(t, wantLayout.wantDeltas, gotDeltas)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func BenchmarkConvertBucketLayout(b *testing.B) {
|
||||||
|
scenarios := []struct {
|
||||||
|
gap int
|
||||||
|
}{
|
||||||
|
{gap: 0},
|
||||||
|
{gap: 1},
|
||||||
|
{gap: 2},
|
||||||
|
{gap: 3},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, scenario := range scenarios {
|
||||||
|
buckets := pmetric.NewExponentialHistogramDataPointBuckets()
|
||||||
|
buckets.SetOffset(0)
|
||||||
|
for i := 0; i < 1000; i++ {
|
||||||
|
if i%(scenario.gap+1) == 0 {
|
||||||
|
buckets.BucketCounts().Append(10)
|
||||||
|
} else {
|
||||||
|
buckets.BucketCounts().Append(0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
b.Run(fmt.Sprintf("gap %d", scenario.gap), func(b *testing.B) {
|
||||||
|
for i := 0; i < b.N; i++ {
|
||||||
|
convertBucketsLayout(buckets, 0)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestExponentialToNativeHistogram(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
exponentialHist func() pmetric.ExponentialHistogramDataPoint
|
||||||
|
wantNativeHist func() prompb.Histogram
|
||||||
|
wantErrMessage string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "convert exp. to native histogram",
|
||||||
|
exponentialHist: func() pmetric.ExponentialHistogramDataPoint {
|
||||||
|
pt := pmetric.NewExponentialHistogramDataPoint()
|
||||||
|
pt.SetStartTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(100)))
|
||||||
|
pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500)))
|
||||||
|
pt.SetCount(4)
|
||||||
|
pt.SetSum(10.1)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.SetZeroCount(1)
|
||||||
|
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{1, 1})
|
||||||
|
pt.Positive().SetOffset(1)
|
||||||
|
|
||||||
|
pt.Negative().BucketCounts().FromRaw([]uint64{1, 1})
|
||||||
|
pt.Negative().SetOffset(1)
|
||||||
|
|
||||||
|
return pt
|
||||||
|
},
|
||||||
|
wantNativeHist: func() prompb.Histogram {
|
||||||
|
return prompb.Histogram{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 4},
|
||||||
|
Sum: 10.1,
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1},
|
||||||
|
NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}},
|
||||||
|
NegativeDeltas: []int64{1, 0},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}},
|
||||||
|
PositiveDeltas: []int64{1, 0},
|
||||||
|
Timestamp: 500,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "convert exp. to native histogram with no sum",
|
||||||
|
exponentialHist: func() pmetric.ExponentialHistogramDataPoint {
|
||||||
|
pt := pmetric.NewExponentialHistogramDataPoint()
|
||||||
|
pt.SetStartTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(100)))
|
||||||
|
pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500)))
|
||||||
|
|
||||||
|
pt.SetCount(4)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.SetZeroCount(1)
|
||||||
|
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{1, 1})
|
||||||
|
pt.Positive().SetOffset(1)
|
||||||
|
|
||||||
|
pt.Negative().BucketCounts().FromRaw([]uint64{1, 1})
|
||||||
|
pt.Negative().SetOffset(1)
|
||||||
|
|
||||||
|
return pt
|
||||||
|
},
|
||||||
|
wantNativeHist: func() prompb.Histogram {
|
||||||
|
return prompb.Histogram{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 4},
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1},
|
||||||
|
NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}},
|
||||||
|
NegativeDeltas: []int64{1, 0},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}},
|
||||||
|
PositiveDeltas: []int64{1, 0},
|
||||||
|
Timestamp: 500,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "invalid negative scale",
|
||||||
|
exponentialHist: func() pmetric.ExponentialHistogramDataPoint {
|
||||||
|
pt := pmetric.NewExponentialHistogramDataPoint()
|
||||||
|
pt.SetScale(-10)
|
||||||
|
return pt
|
||||||
|
},
|
||||||
|
wantErrMessage: "cannot convert exponential to native histogram." +
|
||||||
|
" Scale must be >= -4, was -10",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "no downscaling at scale 8",
|
||||||
|
exponentialHist: func() pmetric.ExponentialHistogramDataPoint {
|
||||||
|
pt := pmetric.NewExponentialHistogramDataPoint()
|
||||||
|
pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500)))
|
||||||
|
pt.SetCount(6)
|
||||||
|
pt.SetSum(10.1)
|
||||||
|
pt.SetScale(8)
|
||||||
|
pt.SetZeroCount(1)
|
||||||
|
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{1, 1, 1})
|
||||||
|
pt.Positive().SetOffset(1)
|
||||||
|
|
||||||
|
pt.Negative().BucketCounts().FromRaw([]uint64{1, 1, 1})
|
||||||
|
pt.Negative().SetOffset(2)
|
||||||
|
return pt
|
||||||
|
},
|
||||||
|
wantNativeHist: func() prompb.Histogram {
|
||||||
|
return prompb.Histogram{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 6},
|
||||||
|
Sum: 10.1,
|
||||||
|
Schema: 8,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 3}},
|
||||||
|
PositiveDeltas: []int64{1, 0, 0}, // 1, 1, 1
|
||||||
|
NegativeSpans: []prompb.BucketSpan{{Offset: 3, Length: 3}},
|
||||||
|
NegativeDeltas: []int64{1, 0, 0}, // 1, 1, 1
|
||||||
|
Timestamp: 500,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "downsample if scale is more than 8",
|
||||||
|
exponentialHist: func() pmetric.ExponentialHistogramDataPoint {
|
||||||
|
pt := pmetric.NewExponentialHistogramDataPoint()
|
||||||
|
pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500)))
|
||||||
|
pt.SetCount(6)
|
||||||
|
pt.SetSum(10.1)
|
||||||
|
pt.SetScale(9)
|
||||||
|
pt.SetZeroCount(1)
|
||||||
|
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{1, 1, 1})
|
||||||
|
pt.Positive().SetOffset(1)
|
||||||
|
|
||||||
|
pt.Negative().BucketCounts().FromRaw([]uint64{1, 1, 1})
|
||||||
|
pt.Negative().SetOffset(2)
|
||||||
|
return pt
|
||||||
|
},
|
||||||
|
wantNativeHist: func() prompb.Histogram {
|
||||||
|
return prompb.Histogram{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 6},
|
||||||
|
Sum: 10.1,
|
||||||
|
Schema: 8,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 1, Length: 2}},
|
||||||
|
PositiveDeltas: []int64{1, 1}, // 0+1, 1+1 = 1, 2
|
||||||
|
NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}},
|
||||||
|
NegativeDeltas: []int64{2, -1}, // 1+1, 1+0 = 2, 1
|
||||||
|
Timestamp: 500,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
validateExponentialHistogramCount(t, tt.exponentialHist()) // Sanity check.
|
||||||
|
got, annots, err := exponentialToNativeHistogram(tt.exponentialHist())
|
||||||
|
if tt.wantErrMessage != "" {
|
||||||
|
assert.ErrorContains(t, err, tt.wantErrMessage)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
require.NoError(t, err)
|
||||||
|
require.Empty(t, annots)
|
||||||
|
assert.Equal(t, tt.wantNativeHist(), got)
|
||||||
|
validateNativeHistogramCount(t, got)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func validateExponentialHistogramCount(t *testing.T, h pmetric.ExponentialHistogramDataPoint) {
|
||||||
|
actualCount := uint64(0)
|
||||||
|
for _, bucket := range h.Positive().BucketCounts().AsRaw() {
|
||||||
|
actualCount += bucket
|
||||||
|
}
|
||||||
|
for _, bucket := range h.Negative().BucketCounts().AsRaw() {
|
||||||
|
actualCount += bucket
|
||||||
|
}
|
||||||
|
require.Equal(t, h.Count(), actualCount, "exponential histogram count mismatch")
|
||||||
|
}
|
||||||
|
|
||||||
|
func validateNativeHistogramCount(t *testing.T, h prompb.Histogram) {
|
||||||
|
require.NotNil(t, h.Count)
|
||||||
|
require.IsType(t, &prompb.Histogram_CountInt{}, h.Count)
|
||||||
|
want := h.Count.(*prompb.Histogram_CountInt).CountInt
|
||||||
|
var (
|
||||||
|
actualCount uint64
|
||||||
|
prevBucket int64
|
||||||
|
)
|
||||||
|
for _, delta := range h.PositiveDeltas {
|
||||||
|
prevBucket += delta
|
||||||
|
actualCount += uint64(prevBucket)
|
||||||
|
}
|
||||||
|
prevBucket = 0
|
||||||
|
for _, delta := range h.NegativeDeltas {
|
||||||
|
prevBucket += delta
|
||||||
|
actualCount += uint64(prevBucket)
|
||||||
|
}
|
||||||
|
assert.Equal(t, want, actualCount, "native histogram count mismatch")
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPrometheusConverter_addExponentialHistogramDataPoints(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
metric func() pmetric.Metric
|
||||||
|
wantSeries func() map[uint64]*prompb.TimeSeries
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "histogram data points with same labels",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_hist")
|
||||||
|
metric.SetEmptyExponentialHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
|
||||||
|
pt := metric.ExponentialHistogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetCount(7)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.Positive().SetOffset(-1)
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{4, 2})
|
||||||
|
pt.Exemplars().AppendEmpty().SetDoubleValue(1)
|
||||||
|
pt.Attributes().PutStr("attr", "test_attr")
|
||||||
|
|
||||||
|
pt = metric.ExponentialHistogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetCount(4)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.Positive().SetOffset(-1)
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{4, 2, 1})
|
||||||
|
pt.Exemplars().AppendEmpty().SetDoubleValue(2)
|
||||||
|
pt.Attributes().PutStr("attr", "test_attr")
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
wantSeries: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist"},
|
||||||
|
{Name: "attr", Value: "test_attr"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Histograms: []prompb.Histogram{
|
||||||
|
{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 7},
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 2}},
|
||||||
|
PositiveDeltas: []int64{4, -2},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 4},
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 3}},
|
||||||
|
PositiveDeltas: []int64{4, -2, -1},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
Exemplars: []prompb.Exemplar{
|
||||||
|
{Value: 1},
|
||||||
|
{Value: 2},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "histogram data points with different labels",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_hist")
|
||||||
|
metric.SetEmptyExponentialHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
|
||||||
|
pt := metric.ExponentialHistogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetCount(7)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.Positive().SetOffset(-1)
|
||||||
|
pt.Positive().BucketCounts().FromRaw([]uint64{4, 2})
|
||||||
|
pt.Exemplars().AppendEmpty().SetDoubleValue(1)
|
||||||
|
pt.Attributes().PutStr("attr", "test_attr")
|
||||||
|
|
||||||
|
pt = metric.ExponentialHistogram().DataPoints().AppendEmpty()
|
||||||
|
pt.SetCount(4)
|
||||||
|
pt.SetScale(1)
|
||||||
|
pt.Negative().SetOffset(-1)
|
||||||
|
pt.Negative().BucketCounts().FromRaw([]uint64{4, 2, 1})
|
||||||
|
pt.Exemplars().AppendEmpty().SetDoubleValue(2)
|
||||||
|
pt.Attributes().PutStr("attr", "test_attr_two")
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
wantSeries: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist"},
|
||||||
|
{Name: "attr", Value: "test_attr"},
|
||||||
|
}
|
||||||
|
labelsAnother := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_hist"},
|
||||||
|
{Name: "attr", Value: "test_attr_two"},
|
||||||
|
}
|
||||||
|
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Histograms: []prompb.Histogram{
|
||||||
|
{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 7},
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0},
|
||||||
|
PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 2}},
|
||||||
|
PositiveDeltas: []int64{4, -2},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
Exemplars: []prompb.Exemplar{
|
||||||
|
{Value: 1},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(labelsAnother): {
|
||||||
|
Labels: labelsAnother,
|
||||||
|
Histograms: []prompb.Histogram{
|
||||||
|
{
|
||||||
|
Count: &prompb.Histogram_CountInt{CountInt: 4},
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: defaultZeroThreshold,
|
||||||
|
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0},
|
||||||
|
NegativeSpans: []prompb.BucketSpan{{Offset: 0, Length: 3}},
|
||||||
|
NegativeDeltas: []int64{4, -2, -1},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
Exemplars: []prompb.Exemplar{
|
||||||
|
{Value: 2},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
metric := tt.metric()
|
||||||
|
|
||||||
|
converter := NewPrometheusConverter()
|
||||||
|
annots, err := converter.addExponentialHistogramDataPoints(
|
||||||
|
metric.ExponentialHistogram().DataPoints(),
|
||||||
|
pcommon.NewResource(),
|
||||||
|
Settings{
|
||||||
|
ExportCreatedMetric: true,
|
||||||
|
},
|
||||||
|
prometheustranslator.BuildCompliantName(metric, "", true),
|
||||||
|
)
|
||||||
|
require.NoError(t, err)
|
||||||
|
require.Empty(t, annots)
|
||||||
|
|
||||||
|
assert.Equal(t, tt.wantSeries(), converter.unique)
|
||||||
|
assert.Empty(t, converter.conflicts)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,258 @@
|
||||||
|
// Copyright 2024 The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/247a9f996e09a83cdc25addf70c05e42b8b30186/pkg/translator/prometheusremotewrite/number_data_points_test.go
|
||||||
|
// Provenance-includes-license: Apache-2.0
|
||||||
|
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
|
||||||
|
|
||||||
|
package prometheusremotewrite
|
||||||
|
|
||||||
|
import (
|
||||||
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/prometheus/common/model"
|
||||||
|
"github.com/prometheus/prometheus/prompb"
|
||||||
|
"github.com/stretchr/testify/assert"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pcommon"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pmetric"
|
||||||
|
)
|
||||||
|
|
||||||
|
func TestPrometheusConverter_addGaugeNumberDataPoints(t *testing.T) {
|
||||||
|
ts := uint64(time.Now().UnixNano())
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
metric func() pmetric.Metric
|
||||||
|
want func() map[uint64]*prompb.TimeSeries
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "gauge",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
return getIntGaugeMetric(
|
||||||
|
"test",
|
||||||
|
pcommon.NewMap(),
|
||||||
|
1, ts,
|
||||||
|
)
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{
|
||||||
|
Value: 1,
|
||||||
|
Timestamp: convertTimeStamp(pcommon.Timestamp(ts)),
|
||||||
|
}},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
metric := tt.metric()
|
||||||
|
converter := NewPrometheusConverter()
|
||||||
|
|
||||||
|
converter.addGaugeNumberDataPoints(
|
||||||
|
metric.Gauge().DataPoints(),
|
||||||
|
pcommon.NewResource(),
|
||||||
|
Settings{
|
||||||
|
ExportCreatedMetric: true,
|
||||||
|
},
|
||||||
|
metric.Name(),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert.Equal(t, tt.want(), converter.unique)
|
||||||
|
assert.Empty(t, converter.conflicts)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPrometheusConverter_addSumNumberDataPoints(t *testing.T) {
|
||||||
|
ts := pcommon.Timestamp(time.Now().UnixNano())
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
metric func() pmetric.Metric
|
||||||
|
want func() map[uint64]*prompb.TimeSeries
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "sum",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
return getIntSumMetric(
|
||||||
|
"test",
|
||||||
|
pcommon.NewMap(),
|
||||||
|
1,
|
||||||
|
uint64(ts.AsTime().UnixNano()),
|
||||||
|
)
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{
|
||||||
|
Value: 1,
|
||||||
|
Timestamp: convertTimeStamp(ts),
|
||||||
|
}},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "sum with exemplars",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
m := getIntSumMetric(
|
||||||
|
"test",
|
||||||
|
pcommon.NewMap(),
|
||||||
|
1,
|
||||||
|
uint64(ts.AsTime().UnixNano()),
|
||||||
|
)
|
||||||
|
m.Sum().DataPoints().At(0).Exemplars().AppendEmpty().SetDoubleValue(2)
|
||||||
|
return m
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{{
|
||||||
|
Value: 1,
|
||||||
|
Timestamp: convertTimeStamp(ts),
|
||||||
|
}},
|
||||||
|
Exemplars: []prompb.Exemplar{
|
||||||
|
{Value: 2},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "monotonic cumulative sum with start timestamp",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_sum")
|
||||||
|
metric.SetEmptySum().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
metric.SetEmptySum().SetIsMonotonic(true)
|
||||||
|
|
||||||
|
dp := metric.Sum().DataPoints().AppendEmpty()
|
||||||
|
dp.SetDoubleValue(1)
|
||||||
|
dp.SetTimestamp(ts)
|
||||||
|
dp.SetStartTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_sum"},
|
||||||
|
}
|
||||||
|
createdLabels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_sum" + createdSuffix},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 1, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
timeSeriesSignature(createdLabels): {
|
||||||
|
Labels: createdLabels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: float64(convertTimeStamp(ts)), Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "monotonic cumulative sum with no start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_sum")
|
||||||
|
metric.SetEmptySum().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
metric.SetEmptySum().SetIsMonotonic(true)
|
||||||
|
|
||||||
|
dp := metric.Sum().DataPoints().AppendEmpty()
|
||||||
|
dp.SetTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_sum"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "non-monotonic cumulative sum with start time",
|
||||||
|
metric: func() pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName("test_sum")
|
||||||
|
metric.SetEmptySum().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
metric.SetEmptySum().SetIsMonotonic(false)
|
||||||
|
|
||||||
|
dp := metric.Sum().DataPoints().AppendEmpty()
|
||||||
|
dp.SetTimestamp(ts)
|
||||||
|
|
||||||
|
return metric
|
||||||
|
},
|
||||||
|
want: func() map[uint64]*prompb.TimeSeries {
|
||||||
|
labels := []prompb.Label{
|
||||||
|
{Name: model.MetricNameLabel, Value: "test_sum"},
|
||||||
|
}
|
||||||
|
return map[uint64]*prompb.TimeSeries{
|
||||||
|
timeSeriesSignature(labels): {
|
||||||
|
Labels: labels,
|
||||||
|
Samples: []prompb.Sample{
|
||||||
|
{Value: 0, Timestamp: convertTimeStamp(ts)},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
metric := tt.metric()
|
||||||
|
converter := NewPrometheusConverter()
|
||||||
|
|
||||||
|
converter.addSumNumberDataPoints(
|
||||||
|
metric.Sum().DataPoints(),
|
||||||
|
pcommon.NewResource(),
|
||||||
|
metric,
|
||||||
|
Settings{
|
||||||
|
ExportCreatedMetric: true,
|
||||||
|
},
|
||||||
|
metric.Name(),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert.Equal(t, tt.want(), converter.unique)
|
||||||
|
assert.Empty(t, converter.conflicts)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,55 @@
|
||||||
|
// Copyright 2024 The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/247a9f996e09a83cdc25addf70c05e42b8b30186/pkg/translator/prometheusremotewrite/testutil_test.go
|
||||||
|
// Provenance-includes-license: Apache-2.0
|
||||||
|
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
|
||||||
|
|
||||||
|
package prometheusremotewrite
|
||||||
|
|
||||||
|
import (
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"go.opentelemetry.io/collector/pdata/pcommon"
|
||||||
|
"go.opentelemetry.io/collector/pdata/pmetric"
|
||||||
|
)
|
||||||
|
|
||||||
|
func getIntGaugeMetric(name string, attributes pcommon.Map, value int64, ts uint64) pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName(name)
|
||||||
|
dp := metric.SetEmptyGauge().DataPoints().AppendEmpty()
|
||||||
|
if strings.HasPrefix(name, "staleNaN") {
|
||||||
|
dp.SetFlags(pmetric.DefaultDataPointFlags.WithNoRecordedValue(true))
|
||||||
|
}
|
||||||
|
dp.SetIntValue(value)
|
||||||
|
attributes.CopyTo(dp.Attributes())
|
||||||
|
|
||||||
|
dp.SetStartTimestamp(pcommon.Timestamp(0))
|
||||||
|
dp.SetTimestamp(pcommon.Timestamp(ts))
|
||||||
|
return metric
|
||||||
|
}
|
||||||
|
|
||||||
|
func getIntSumMetric(name string, attributes pcommon.Map, value int64, ts uint64) pmetric.Metric {
|
||||||
|
metric := pmetric.NewMetric()
|
||||||
|
metric.SetName(name)
|
||||||
|
metric.SetEmptySum().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
|
||||||
|
dp := metric.Sum().DataPoints().AppendEmpty()
|
||||||
|
if strings.HasPrefix(name, "staleNaN") {
|
||||||
|
dp.SetFlags(pmetric.DefaultDataPointFlags.WithNoRecordedValue(true))
|
||||||
|
}
|
||||||
|
dp.SetIntValue(value)
|
||||||
|
attributes.CopyTo(dp.Attributes())
|
||||||
|
|
||||||
|
dp.SetStartTimestamp(pcommon.Timestamp(0))
|
||||||
|
dp.SetTimestamp(pcommon.Timestamp(ts))
|
||||||
|
return metric
|
||||||
|
}
|
Loading…
Reference in a new issue