mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-09 23:24:05 -08:00
promql: refactor: simplify internal data structures
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
This commit is contained in:
parent
5f10d17cef
commit
bd9bdccb22
|
@ -1293,29 +1293,27 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
|
||||
func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping []string) (Matrix, annotations.Annotations) {
|
||||
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
||||
matrixes := make([]Matrix, 2)
|
||||
origMatrixes := make([]Matrix, 2)
|
||||
originalNumSamples := ev.currentSamples
|
||||
|
||||
var warnings annotations.Annotations
|
||||
for i, e := range []parser.Expr{aggExpr.Param, aggExpr.Expr} {
|
||||
// Functions will take string arguments from the expressions, not the values.
|
||||
if e != nil && e.Type() != parser.ValueTypeString {
|
||||
// ev.currentSamples will be updated to the correct value within the ev.eval call.
|
||||
val, ws := ev.eval(e)
|
||||
warnings.Merge(ws)
|
||||
matrixes[i] = val.(Matrix)
|
||||
|
||||
// Keep a copy of the original point slices so that they
|
||||
// can be returned to the pool.
|
||||
origMatrixes[i] = make(Matrix, len(matrixes[i]))
|
||||
copy(origMatrixes[i], matrixes[i])
|
||||
}
|
||||
// param is the number k for topk/bottomk.
|
||||
var param float64
|
||||
if aggExpr.Param != nil {
|
||||
val, ws := ev.eval(aggExpr.Param)
|
||||
warnings.Merge(ws)
|
||||
param = val.(Matrix)[0].Floats[0].F
|
||||
}
|
||||
// Now fetch the data to be aggregated.
|
||||
// ev.currentSamples will be updated to the correct value within the ev.eval call.
|
||||
val, ws := ev.eval(aggExpr.Expr)
|
||||
warnings.Merge(ws)
|
||||
inputMatrix := val.(Matrix)
|
||||
|
||||
vectors := make([]Vector, 2) // Input vectors for the function.
|
||||
args := make([]parser.Value, 2) // Argument to function.
|
||||
biggestLen := len(matrixes[1])
|
||||
// Keep a copy of the original point slice so that it can be returned to the pool.
|
||||
origMatrix := inputMatrix
|
||||
|
||||
var vector Vector // Input vectors for the function.
|
||||
biggestLen := len(inputMatrix)
|
||||
enh := &EvalNodeHelper{Out: make(Vector, 0, biggestLen)}
|
||||
type seriesAndTimestamp struct {
|
||||
Series
|
||||
|
@ -1324,16 +1322,14 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
|
||||
tempNumSamples := ev.currentSamples
|
||||
|
||||
seriesHelpers := make([][]EvalSeriesHelper, 2)
|
||||
bufHelpers := make([][]EvalSeriesHelper, 2)
|
||||
// Prepare a function to initialise series helpers with the grouping key.
|
||||
// Initialise series helpers with the grouping key.
|
||||
buf := make([]byte, 0, 1024)
|
||||
|
||||
seriesHelpers[1] = make([]EvalSeriesHelper, len(matrixes[1]))
|
||||
bufHelpers[1] = make([]EvalSeriesHelper, len(matrixes[1]))
|
||||
seriesHelper := make([]EvalSeriesHelper, len(inputMatrix))
|
||||
bufHelper := make([]EvalSeriesHelper, len(inputMatrix))
|
||||
|
||||
for si, series := range matrixes[1] {
|
||||
seriesHelpers[1][si].groupingKey, buf = generateGroupingKey(series.Metric, sortedGrouping, aggExpr.Without, buf)
|
||||
for si, series := range inputMatrix {
|
||||
seriesHelper[si].groupingKey, buf = generateGroupingKey(series.Metric, sortedGrouping, aggExpr.Without, buf)
|
||||
}
|
||||
|
||||
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
|
@ -1343,42 +1339,35 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
// Reset number of samples in memory after each timestamp.
|
||||
ev.currentSamples = tempNumSamples
|
||||
// Gather input vectors for this timestamp.
|
||||
for i := range []parser.Expr{aggExpr.Param, aggExpr.Expr} {
|
||||
vectors[i] = vectors[i][:0]
|
||||
bufHelpers[i] = bufHelpers[i][:0]
|
||||
{
|
||||
vector = vector[:0]
|
||||
bufHelper = bufHelper[:0]
|
||||
|
||||
for si, series := range matrixes[i] {
|
||||
for si, series := range inputMatrix {
|
||||
switch {
|
||||
case len(series.Floats) > 0 && series.Floats[0].T == ts:
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, F: series.Floats[0].F, T: ts})
|
||||
vector = append(vector, Sample{Metric: series.Metric, F: series.Floats[0].F, T: ts})
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
matrixes[i][si].Floats = series.Floats[1:]
|
||||
inputMatrix[si].Floats = series.Floats[1:]
|
||||
case len(series.Histograms) > 0 && series.Histograms[0].T == ts:
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, H: series.Histograms[0].H, T: ts})
|
||||
matrixes[i][si].Histograms = series.Histograms[1:]
|
||||
vector = append(vector, Sample{Metric: series.Metric, H: series.Histograms[0].H, T: ts})
|
||||
inputMatrix[si].Histograms = series.Histograms[1:]
|
||||
default:
|
||||
continue
|
||||
}
|
||||
if seriesHelpers[i] != nil {
|
||||
bufHelpers[i] = append(bufHelpers[i], seriesHelpers[i][si])
|
||||
}
|
||||
bufHelper = append(bufHelper, seriesHelper[si])
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
}
|
||||
args[i] = vectors[i]
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
}
|
||||
|
||||
// Make the function call.
|
||||
enh.Ts = ts
|
||||
var param float64
|
||||
if aggExpr.Param != nil {
|
||||
param = args[0].(Vector)[0].F
|
||||
}
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, args[1].(Vector), bufHelpers[1], enh)
|
||||
result, ws := ev.aggregation(aggExpr, sortedGrouping, param, vector, bufHelper, enh)
|
||||
|
||||
enh.Out = result[:0] // Reuse result vector.
|
||||
warnings.Merge(ws)
|
||||
|
@ -1440,12 +1429,10 @@ func (ev *evaluator) rangeEvalAgg(aggExpr *parser.AggregateExpr, sortedGrouping
|
|||
}
|
||||
}
|
||||
|
||||
// Reuse the original point slices.
|
||||
for _, m := range origMatrixes {
|
||||
for _, s := range m {
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
// Reuse the original point slice.
|
||||
for _, s := range origMatrix {
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
mat := make(Matrix, 0, len(seriess))
|
||||
|
|
Loading…
Reference in a new issue